ILiL 11 I L = I o TSTS D m2m2 m1m1 Buck Converter – Discontinuous Conduction 22.

Slides:



Advertisements
Similar presentations
Bi-directional DC-DC converter with Soft Switching Cell
Advertisements

EE462L, Spring 2014 DC−DC SEPIC (Converter)
M2-3 Buck Converter Objective is to answer the following questions: 1.How does a buck converter operate?
EE462L, Fall 2011 DC−DC Buck/Boost Converter
DC Choppers 1 Prof. T.K. Anantha Kumar, E&E Dept., MSRIT
Ch6 DC-DC Converters 6-1 Linear voltage regulators Fig. 6.1 Adjustingbasecurrent, => linear DC-DC converter orlinear regulator Thetransistor operates in.
EE462L, Spring 2014 DC−DC Boost Converter
7. Introduction to DC/DC Converters
1 Final Year Project Development of method for improving the light-load efficiency of VRM’s Project Supervisor : Dr. Maeve Duffy March 2009.
Introduction to DC-DC Conversion – Cont.
Buck Regulator Architectures 4.1 Overview. Buck-Switching Converters 2 SynchronousNon-Synchronous (External-FET) Controllers (Internal-FET) Regulators.
DC-DC Converters (choppers) The objective is to convert a fixed DC voltage to a variable DC voltage It is possible to step up and step down voltage.
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
POWER SEMICONDUCTOR SYSTEMS I Author: Ales Havel Phone number: 4287 Headquarters: E227 Web page:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Active clamp circuits Can be viewed as a lossless voltage-clamp snubber.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures The conventional forward converter Max v ds = 2V g + ringing Limited.
1 Parameters for various resonant switch networks.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 General Solution for the Steady-State Characteristics of the Series.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
ECE 442 Power Electronics1 Class E Resonant Inverter.
ECE 442 Power Electronics1 Step Up Converter Close the switch to store energy in the inductor L Open the switch to transfer the energy stored in L to the.
Switching-Mode Regulators
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Copyright by UNIT III DC Choppers 4/17/2017 Copyright by
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Announcements Correction to HW #2, Problem 19.3 solution Clarification.
DC-DC Switch-Mode Converters
(C) 2004 SYNC POWER CORP. ALL Rights Reserved. 9F-5, No. 3-2, Park Street, Nankang District, (NKSP), Taipei, Taiwan, 115, R.O.C. Tel: Fax:
Power Electronics Notes 07B Some Real-World Issues in DC/DC Converters
DC-DC Fundamentals 1.3 Switching Regulator
Buck Converter + V in - + V OUT - Assumptions for First Order Analysis: All components are ideal, including voltage source Output ripple voltage is negligible.
Switching Converter Boost Converter Buck/Boost Converter Buck Converter + V IN - + V OUT - I IN IOIO.
Power Electronics Notes 07A Introduction to DC/DC Converters
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Tema 2: Teoría básica de los convertidores CC/CC (I)
Welcome This is a template to create an Instructional Design Document of the concept you have selected for creating animation. This will take you through.
DC−DC Buck Converter 1. DC-DC switch mode converters 2.
1 SEA_uniovi_CC1_00 Lección 4 Teoría básica de los convertidores CC/CC (I) (convertidores con un único transistor) Diseño de Sistemas Electrónicos de Potencia.
Power Management for Embedded Systems. Power requirement for Embedded Micro Systems Multiple supply voltages Small size in all components, L R C etc High.
Alternate interpretation for Exercises 3.35 thru 3.37 These exercises are based on the assumption that the converters are operating in DCM with a fixed.
Switch Mode Power Supplies Use of Transformers for Electrical (DC) Isolation Safety – Isolate output voltages from Electrical Grid Multiple Reference (
Chapter 3 DC to DC Converters
DC−DC Buck Converter.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2.
1 Practice Problem The periodic waveform shown is applied to a 100Ω resistor. What value of α yields 50W average power to the resistor? α is the “duty.
Gandhinagar Institute of Technology
1 Step Input Change Response Closed-Loop Control.
Power Electronics and Power Conversion, Assiut University 1 Photovoltaic Systems Ahmed G. Abo-Khalil.
بحث مشترك منشور فى مؤتمر دولى متخصص (منشور ، التحكيم علي البحث الكامل) B. M. Hasaneen and Adel A. Elbaset البحث التاسع 12 th International Middle East.
Buck-Boost Converters
Switching-Mode Regulators
UNIT III DC Choppers.
PFC: Bridging the CCM/TM gap
Subject :- Power Electronics-1 Topic :- step down & step up chopper
At National Institute of Technology, Meghalaya, Shillong, India
DC-DC PWM Converters Lecture Note 5.
DC-DC Converter Functional block diagram.
General Solution for the Steady-State Characteristics of the Series Resonant Converter Type k CCM Mode index k and subharmonic number 
Buck-derived full-bridge converter
DC−DC Boost Converter.
Power Converter’s Discontinuous Current Mode Operation
Power Semiconductor Systems I
Dr. Unnikrishnan P.C. Professor, EEE
Dr. Unnikrishnan P.C. Professor, EEE
Output voltage is larger than Vin, but output current is smaller
Presentation transcript:

iLiL 11 I L = I o TSTS D m2m2 m1m1 Buck Converter – Discontinuous Conduction 22

Determine D,  1,  2

iLiL 11 I L = I IN TSTS D m2m2 m1m1 Boost Converter – Discontinuous Conduction 22

Determine D,  1,  2

Summary for Discontinuous Conduction Mode ParameterBuckBoostBuck/Boost ILIL IOIO I IN I IN - I O I L (max) D DCM 11 22

ParameterModeBuckBoostBuck/Boost V O RangeC/D0 < V O /V IN < 1V O /V IN > 1V O /V IN < 0 I IN C/DI O (V O /V IN ) = P O /V IN = (V O /R O )(V O /V IN ) I L (max) CI L + I L,cr D I L (min)CI L - I L,cr C/D Boundary I IN,cr C/D(V O /V IN ) 2 (V IN - V O )/2Lf(V IN /V O )(V O - V IN )/2Lf(V O /(V O - V IN )) 2 (V IN /2Lf) I L,cr C/DI O,cr I IN,cr I IN,cr - I O,cr I O,cr C/D(V O /V IN )(V IN - V O )/2Lf(V IN /V O ) 2 (V O - V IN )/2Lf(V IN /(V O -V IN )) 2 (V O /2Lf) Duty Cycle CV O /V IN (V O -V IN )/V O V O / (V O -V IN ) DV O /V IN (V O -V IN )/V O V O / (V O -V IN ) 11 C(V IN –V O )/V IN V IN /V O V IN / (V IN -V O ) D (V IN - V O )/V IN V IN /V O V IN / (V IN -V O ) 22 D Reverse diode for V IN < 0 DCM if I O /I O,cr < 1 Switching Converter Parameters

Ripple Voltage: Buck Converter iLiL tQtQ I L = I o TSTS DT s QQ 11 22

Ripple Voltage: Boost/Buck-Boost Converter iLiL TSTS DT s tQtQ QQ 11 22

Buck Converter – Discontinuous Conduction With constant duty cycle, D, V O is constant if I O > I O,cr (CCM) If I O < I O,cr, V O increases as I O decreases! True for other converters also.