Today’s lecture Scientific method Night sky Celestial coordinate systems Parallax Angular size.

Slides:



Advertisements
Similar presentations
Astronomy Class Notes Jim Mims.
Advertisements

Stars, Constellations, and the Celestial Sphere
Observational Astronomy. Astronomy from space Hubble Space Telescope.
Lecture 1 PHYS Lecture 1: Angles, Parallax and Astronomical Distance Units Objectives: Understand basic astronomical terminology to describe.
The Science of Astronomy
Chapter 1 Charting the Heavens
Synodic vs. sidereal month If you see the Moon setting and it is full, what did the Moon look like when it was on the eastern horizon 12 hours earlier?
Celestial Sphere Stars seem to be on the inner surface of a sphere surrounding the Earth.
Observing Astronomy 315 Professor Lee Carkner Lecture 3.
Chapter 0 Charting the Heavens
Prologue Welcome to PH109 Exploring the Universe Dr. Michael L. Cobb Fall, 2003.
Astro 10-Lecture 2: The nature of science and scientific models Dr. Eric Korpela
The Earth Rotates.
The Solar System.
CHAPTER 1: Discovering the Night Sky—
Observing and the Sky Astronomy 311 Professor Lee Carkner Lecture 3.
Summary January The wobble technique assumes that a star will physically be perturbed by the orbit of a planet around it and the resulting motion.
Today’s Lecture How to find astronomical objects
Today’s lecture Parallax Angular size.
Grab your text book Chapter 1 Astronomy Today 7th Edition
Motion in the Sky. Discussion How do we estimate how far away things are from us in everyday life?
Grab your text book Chapter 1 Astronomy Today 7th Edition
Discovering The Universe for Yourself
Today’s topics Orbits Parallax Angular size and physical size Precession Reading sections 1.5, 2.6,
© 2011 Pearson Education, Inc. Lecture Outlines Chapter 1 Astronomy Today 7th Edition Chaisson/McMillan.
Our goals for learning:
© 2011 Pearson Education, Inc. Lecture Outlines Chapter 1 Astronomy Today 7th Edition Chaisson/McMillan.
Introduction to Astronomy.  Observations lead to theories and laws  Laws are concise statements that summaries a large number of observations.  Theories.
ASTR 111 – 003 Fall 2007 Lecture 01 Aug. 27, 2007 Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy I: Solar System Ch1: Astronomy and.
Groups of dark brown streaks have been photographed by the Mars Reconnaissance Orbiter on melting pinkish sand dunes covered with light frost. Dark sand.
Observational Astrophysics in the visible light Shai Kaspi Technion - March 2015.
Welcome to PH109 Exploring the Universe Dr. Michael L. Cobb Fall, 2013.
Alta High Astronomy Intro: Astronomy A stellar course to be in!
Bellringer Name as many Modern constellations in the night sky as you are able.
1. annular eclipse - the moon is not close enough to the earth to completely block the sun, so the sun rings the moon.
Last time: 2.1. Patterns in The Sky: Stars and constellations, TODAY: celestial coordinates 2.2 Seasons,…Precession 2.2 (cont.) The Moon and Eclipses.
Chapter 0 Lecture Charting the Heavens.
Chapter 1 Predicting the Motions of the Stars, Sun, and Moon.
Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as.
A scientific model.  Why do we use the model of the celestial sphere when studying the night sky, even though it does not accurately represent three-dimensional.
First announcement: full moon tonight at 12:18 AM.
Announcements Clear sky patrol has not yet started We will start using PRS units this week, make sure that you have one.
ASTR 111 – 003 Fall 2006 Lecture 01 Aug. 28, 2006 Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy II Ch1: Astronomy and the Universe.
Today’s lecture Scientific method Hypotheses, models, theories...
Introduction and The Nature of Science. The Nature of Science 1.Science: observation of the world and the constant testing of theories against nature,
Astronomical Tools. Guiding Questions 1.What methods do scientists use to expand our understanding of the universe? 2.What makes up our solar system?
1 Lines in the Sky In order to use the sky to measure time you need to measure the location of objects in the sky. We will look at two methods of measuring.
Some Basic Facts 12 Constellations of the Zodiac: groups of stars
Astronomy Basics Distances and Vocabulary Angles and the Unit Circle Powers of Ten Scientific Notation.
The sky Our place in space ConstellationsMeasurement Celestial Sphere Polaris and precession $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
Universe Tenth Edition Chapter 2 Knowing the Heavens Roger Freedman Robert Geller William Kaufmann III.
Unit I - Lesson I “Foundations of Astronomy” Astronomy.
Chapter 0: Charting the Heavens. Units of Chapter 0 The “Obvious” View Earth’s Orbital Motion The Motion of the Moon The Measurement of Distance Science.
Charting the Heavens The gears in the big machine.
Today’s lecture Scientific method Powers of ten Distances and astronomical objects Reading: Chapter , 1.6, 1.8.
Astronomy 202 Stars, Galaxies, and the Universe Dr. Jeff Kriessler.
ASTRONOMICAL OBSERVATIONS Astronomical Observations.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 1.
Chapter 4: Rising & Setting Stars © BRIEF
Motion in the Sky. Discussion What is a year? Discussion What is a day?
Today’s lecture Powers of ten Scientific method. Powers of ten are shorthand for writing very large numbers 10 0 = 1One 10 1 = 10Ten (deca) 10 2 = 100Hundred.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 1.
© 2011 Pearson Education, Inc. Chapter 1 Charting the Heavens.
© 2017 Pearson Education, Inc.
Constellations and Distances to Stars
Open up your laptops, go to MrHyatt.rocks, and do today’s bellwork
Astronomical Tools.
Today’s topics Phases of the Moon Solar and lunar eclipses
Exploring the Universe
Presentation transcript:

Today’s lecture Scientific method Night sky Celestial coordinate systems Parallax Angular size

To understand the universe, scientists use the “Scientific Method” 1.Observe - Observe something. Write down the observations and make sure that other people can repeat them on their own. 2.Guess - Make a guess about how that something happens. The guess has to be in the form of an explanation that can be used in other contexts. The guess must help to make predictions about other observations. 3.Test and Criticize - Observe similar things to see if the guess (the explanation) is correct or needs to be modified. 4.Repeat - until you get it right.

Types of Guesses Hypothesis One or more ideas to explain an observation or set of observations. Must be useful in making predictions about other observations, be testable, and be falsifiable. Model Hypotheses that have withstood observational and experimental tests. Theory A well-founded body of related hypotheses and models that form a self-consistent description of nature. Law A theory that has been very well tested and is applicable over a wide range of different situations.

Which are legitimate scientific hypotheses? 1.Any two objects dropped from the same height above the surface of the moon will hit the lunar surface at the same time. 2.Our universe is surrounded by another, larger universe, with which we can have absolutely no contact or interaction. 3.All horses are brown.

Science, religion, and pseudo-science Scientific theories are experimentally verifiable (or falsifiable) and predictive. They address how questions (e.g. How do stars form? How is a lunar eclipse caused? How did the Universe evolve?) Religious and ethical statements are (generally) not verifiable. They address why questions (e.g. Why does the Universe exist? What kind of life is worth living?). These are not intrinsically less worthwhile than scientific inquiries, they are simply addressing different questions. Religion and science come into conflict when religion supplies answers for questions that can now be addressed by science, i.e. evolution of humans, age of the Universe. Pseudo-science theories pretend to be scientific but are either not falsifiable (e.g. séances, ) or supporters or use anecdotal evidence to support claims (e.g. astrology, ‘creation’ science).

Skepticism and Truth Role of skepticism. An essential part of the scientific method. Scientists always question the basis for an scientific assertion. This is often considered ‘impolite’ behavior in social settings, but is not impolite in scientific discussion. ‘What is truth?’ - Scientific theories are not statements of truth. They are the best available explanation for observed facts, but are subject to revision or falsification. Scientists must be able to admit that they are wrong.

Occam's Razor What if two or more competing hypotheses both pass some initial tests - how do you choose between them? If the hypotheses generate different predictions it will be a simple matter to pick the best one - as long as it is feasible to carry out the experimental tests. What if the competing hypotheses don't give distinguishable, feasible predictions? Enter "Occam's Razor". William of Occam was a medieval scholar and logician, and, in modern form, the principle that has come to be known as Occam's Razor says: If two hypotheses can't be distinguished experimentally, choose the simpler one.

How does one locate an object on the night sky? 1.By drawing imaginary patterns on the sky (the constellations) and then locating the object relative to the stars in the constellations. 2.By drawing an imaginary coordinate system on the sky, then specifying the objects coordinates.

Eighty-eight constellations cover the entire sky stars visible to unaided eye (only half are above the horizon). 88 semi-rectangular groups of stars called constellations. Some stars in the constellations are quite close while others are very far away.

Finding M51

We use angles to denote the positions and apparent sizes of objects in the sky.

Your hand at arm’s length is about 10 degrees wide Your thumb at arm’s length is about 2 degrees wide

Coordinate system

Coordinates are Latitude = degrees North or South of the equator Longitude = degrees East or West of the “Prime meridian” Prime meridian is historically defined as longitude of the Royal Observatory in Greenwich, England

Sky coordinate system Introduce the ‘celestial sphere’ This is an imaginary sphere drawn in space with the earth at its center. We align the sphere with the Earth.

Coordinates are: Declination = degrees North or South of the equator. Right ascension = degrees East of the “Vernal equinox”. Vernal equinox is defined as the position of the Sun on the first day of spring. Note it is a point on the sky, not the earth.

Motion of stars on the sky

The rotation of the Earth causes the stars to appear to move on the sky.

Precession If you spin a top, its very hard to get it to spin exactly straight – usually it wobbles around in a circle The spinning Earth wobbles in exactly the same way – this is called precession

Precession of the Earth Precession causes celestial coordinates to change slowly with time. When observing, one must have coordinates for the correct epoch.

Angular Measure for Small Angles 1º = 60 arcminutes = 60′ 1′ = 60 arcseconds = 60″ e.g., On January 1, 2004, the planet Saturn had an angular diameter of 19.7″ as viewed from Earth.

How can you measure the distance to an object you can’t reach? Use triangles…

Triangles The small triangle has the same shape as the large one. By measuring the two sides of the small triangle and the short side of the big triangle, we can calculate the length of the long side of the big triangle.

Measuring distance a d A D

So, how can we measure the distance to stars? Take two telescopes some distance apart and observe the same star. Measure the tilt between the two telescopes – this sets all the angles for the triangles. Then we can find the distance to the star from the distance between the telescopes and the angle of the tilt. p p

So, how can we measure the distance to stars? We want to use the largest distance we can for the short side of the big triangle What is the largest distance we can get between the two telescopes (if both of them have to be on Earth – no spacecraft).

So, how can we measure the distance to stars? The largest distance is not by placing the two telescopes at opposite ends of the Earth. Instead, we can use one telescope and just let the earth move.

A.U. = Astronomical Unit = distance from Earth to Sun

Stellar Parallax As Earth moves from one side of the Sun to the other, a nearby star will seem to change its position relative to the distant background stars. d = 1 / p d = distance to nearby star in parsecs p = parallax angle of that star in arcseconds

Closer star – larger parallax

Example: Using parallax to determine distance The bright star Vega has a measured parallax of 0.1 arcsec (p = 0.1″) This means that Vega appears to move from +0.1″ to - 0.1″ with respect to distant stars over a year ’ s observation D(pc) = 1/p(″) = 1/0.1 = 10 pc Vega is 10 pc (parsec) from Earth (remember: 1 pc = 3.26 light years)

Sizes of Astronomical Objects How can we measure the sizes of astronomical objects? The same way that we measure distances – using triangles

The Small-Angle Formula D = linear size of object θ = angular size of object (in arcseconds) d = distance to the object

Example: On November 28, 2000, the planet Jupiter was 609 million kilometers from Earth and had an angular diameter of 48.6″. Using the small-angle formula, determine Jupiter’s actual diameter. D = 48.6″ x 609,000,000 km / = 143,000 km The Small-Angle Formula D = linear size of object θ = angular size of object (in arcsec) d = distance to the object d D  

Review questions What do we mean by a model in science? Determine the distance to Alpha Centauri which has a parallax of 0.75 arcseconds. If one can measure stellar positions to an accuracy of 0.01”, what is the farthest distance that can be measured to an accuracy of 10% or better? If the distance to the Sun is known, describe how one could determine its physical size.