Demand Management and FORECASTING Operations Management Dr. Ron Tibben-Lembke.

Slides:



Advertisements
Similar presentations
Forecasting OPS 370.
Advertisements

Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management Forecasting Chapter 4
Dr. Ron Lembke. All-Time Average To forecast next period, take the average of all previous periods Advantages: Simple to use Disadvantages: Ends up with.
Demand Management and FORECASTING
Demand Management and FORECASTING Operations Management Dr. Ron Lembke.
Demand Management and FORECASTING Operations Management Dr. Ron Lembke.
Qualitative Forecasting Methods
Chapter 12 - Forecasting Forecasting is important in the business decision-making process in which a current choice or decision has future implications:
Forecasting.
CHAPTER 3 Forecasting.
Chapter 3 Forecasting McGraw-Hill/Irwin
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 5-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ PERTEMUAN 14.
Chapter 13 Forecasting.
Demand Management and FORECASTING Operations Management Dr. Ron Lembke.
Operations Management R. Dan Reid & Nada R. Sanders
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Chapter 12 Roberta Russell & Bernard.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
FORECASTING Operations Management Dr. Ron Lembke.
Mr. David P. Blain. C.Q.E. Management Department UNLV
Slides 13b: Time-Series Models; Measuring Forecast Error
Demand Management and FORECASTING Operations Management Dr. Ron Lembke.
Forecasting Chapter 15.
Forecasting.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Chapter 6 Forecasting n Quantitative Approaches to Forecasting n Components of a Time Series.
Slides by John Loucks St. Edward’s University.
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Operations and Supply Chain Management
The Importance of Forecasting in POM
Demand Management and Forecasting
Operations Management
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Operations Management For Competitive Advantage 1Forecasting Operations Management For Competitive Advantage Chapter 11.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Operations Research II Course,, September Part 6: Forecasting Operations Research II Dr. Aref Rashad.
Time Series Analysis and Forecasting
Forecasting Operations Management For Competitive Advantage.
Dr. Ron Lembke. Washoe Gaming Win, What did they mean when they said it was down three quarters in a row? Look at year-over-year.
Copyright ©2016 Cengage Learning. All Rights Reserved
1 Chapter 13 Forecasting  Demand Management  Qualitative Forecasting Methods  Simple & Weighted Moving Average Forecasts  Exponential Smoothing  Simple.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
15-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Forecasting Chapter 15.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
Chapter 12 Forecasting. Lecture Outline Strategic Role of Forecasting in SCM Components of Forecasting Demand Time Series Methods Forecast Accuracy Regression.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 8 Forecasting To Accompany.
Forecasting Production and Operations Management 3-1.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Forecasting. ©2006 Pearson Prentice Hall — Introduction to Operations and Supply Chain Management — Bozarth & Handfield Chapter 9, Slide 2 Why Forecast?
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Forecasting Chapter 9.
Operations Management Dr. Ron Lembke
Averaging Methods of Forecasting
Forecasting with a Trend
Operations Management Dr. Ron Lembke
Operations Management Dr. Ron Lembke
Forecasting is an Integral Part of Business Planning
Demand Management and Forecasting
Presentation transcript:

Demand Management and FORECASTING Operations Management Dr. Ron Tibben-Lembke

Demand Management Coordinate sources of demand for supply chain to run efficiently, deliver on time Independent Demand ▫Things demanded by end users Dependent Demand ▫Demand known, once demand for end items is known

Affecting Demand Increasing demand ▫Marketing campaigns ▫Sales force efforts, cut prices Changing Timing of demand ▫Incentives for earlier or later delivery ▫At capacity, don’t actively pursue more

Predicting the Future We know the forecast will be wrong. Try to make the best forecast we can, ▫Given the time we want to invest ▫Given the available data

Time Horizons Different decisions require projections about different time periods: Short-range: who works when, what to make each day (weeks to months) Medium-range: when to hire, lay off (months to years) Long-range: where to build plants, enter new markets, products (years to decades)

Forecast Impact Finance & Accounting: budget planning Human Resources: hiring, training, laying off employees Capacity: not enough, customers go away angry, too much, costs are too high Supply-Chain Management: bringing in new vendors takes time, and rushing it can lead to quality problems later

Qualitative Methods Sales force composite / Grass Roots Market Research / Consumer market surveys & interviews Jury of Executive Opinion / Panel Consensus Delphi Method Historical Analogy - DVDs like VCRs Naïve approach

Quantitative Methods Time Series Methods 0. All-Time Average 1. Simple Moving Average 2. Weighted Moving Average 3. Exponential Smoothing 4. Exponential smoothing with trend 5. Linear regression Causal Methods Linear Regression

Time Series Forecasting Assume patterns in data will continue, including: Trend (T) Seasonality (S) Cycles (C) Random Variations

All-Time Average To forecast next period, take the average of all previous periods Advantages: Simple to use Disadvantages: Ends up with a lot of data Gives equal importance to very old data

Moving Average Compute forecast using n most recent periods Jan Feb MarAprMayJunJul 3 month Moving Avg: June forecast: F Jun = (A Mar + A Apr + A May )/3 If no cycles to demand, quite a bit of freedom to choose n

Moving Average Advantages: ▫ Ignores data that is “too” old ▫ Requires less data than simple average ▫ More responsive than simple average Disadvantages: ▫ Still lacks behind trend like simple average, (though not as badly) ▫ The larger n is, more smoothing, but the more it will lag ▫ The smaller n is, the more over-reaction

Simple and Moving Averages

Centered Moving Average Take average of n periods, Plot the average in the middle period Not useful for forecasting More stable than actuals If seasonality, n = season length (4wks, 12 mo, etc.)

CMA - # Periods to Average What if data has 12-month cycle? Ja F M Ap My Jn Jl Au S O N D Ja F M Avg of Jan-Dec gives average of month 6.5: ( )/12=6.5 Avg of Feb-Jan gives average of month 6.5: ( )/12=7.5 How get a July average? Average of other two averages

Centered Moving Average To center even-number of periods 12: take half each of 1 and 13, plus sum of F14 = 0.5 A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A A13 This is exactly the same as what you get by taking the average of the averages from previous slide

Old Data Comparison of simple, moving averages clearly shows that getting rid of old data makes forecast respond to trends faster Moving average still lags the trend, but it suggests to us we give newer data more weight, older data less weight.

Weighted Moving Average F Jun = (A Mar + A Apr + A May )/3 = (3A Mar + 3D Apr + 3A May )/9 Why not consider: F Jun = (2A Mar + 3A Apr + 4A May )/9 F Jun = 2/9 A Mar + 3/9 A Apr + 4/9 A May F t = w 1 A t-3 + w 2 A t-2 + w 3 A t-1 Complicated: Have to decide number of periods, and weights for each Weights have to add up to 1.0 Most recent probably most relevant, gets most weight Carry around n periods of data to make new forecast

Weighted Moving Average Wts = 0.5, 0.3, 0.2

Exponential Smoothing A t-1 Actual demand in period t-1 F t-1 Forecast for period t-1  Smoothing constant >0, <1 Forecast is old forecast plus a portion of the error of the last forecast. Formulas are equivalent, give same answer

Exponential Smoothing Smoothing Constant between Easier to compute than moving average Most widely used forecasting method, because of its easy use F 1 = 1,050,  = 0.05, A 1 = 1,000 F 2 = F1 +  (A 1 - F 1 ) = 1, (1,000 – 1,050) = 1, (-50) = 1,047.5 units BTW, we have to make a starting forecast to get started. Often, use actual A1

Weighted Moving Average Alpha = 0.3

Weighted Moving Average Alpha = 0.5

Exponential Smoothing We take: And substitute in to get: and if we continue doing this, we get: Older demands get exponentially less weight

Choosing  Low  : if demand is stable, we don’t want to get thrown into a wild-goose chase, over-reacting to “trends” that are really just short-term variation High  : If demand really is changing rapidly, we want to react as quickly as possible

Averaging Methods Simple Average Moving Average Weighted Moving Average Exponentially Weighted Moving Average (Exponential Smoothing) They ALL take an average of the past ▫With a trend, all do badly ▫Average must be in-between

Trend-Adjusted Ex. Smoothing

Forecast including trend for period 1 is Suppose actual demand is 115, A 1 =115

Trend-Adjusted Ex. Smoothing Forecast including trend for period 1 is Suppose actual demand is 120, A 2 =120

Selecting  and  You could: ▫Try an initial value for each parameter. ▫Try lots of combinations and see what looks best. ▫But how do we decide “what looks best?” Let’s measure the amount of forecast error. Then, try lots of combinations of parameters in a methodical way. ▫Let  = 0 to 1, increasing by 0.1  For each  value, try  = 0 to 1, increasing by 0.1

Evaluating Forecasts How far off is the forecast? What do we do with this information? Forecasts Demands

Evaluating Forecasts Mean Absolute Deviation Mean Squared Error Mean Absolute Percent Error

Tracking Signal To monitor, compute tracking signal If >4 or <-4 something is wrong Top should sum to 0 over time. If not, forecast is biased.

Monitoring Forecast Accuracy Monitor forecast error each period, to see if it becomes too great Forecast Error Forecast Period Lower Limit Upper Limit

Updating MAD Simplified calculation avoids keeping running total of all errors and demands: Standard Deviation can be estimated from MAD:

Techniques for Trend Determine how demand increases as a function of time t = periods since beginning of data b = Slope of the line a = Value of y t at t = 0

Computing Values

Linear Regression Three methods ▫Type in formulas for trend, intercept ▫Tools | Data Analysis | Regression ▫Graph, and R click on data, add a trendline, and display the equation. ▫Use intercept(Y,X) and slope(Y,X) commands Fits a trend and intercept to the data. Gives all data equal weight. Exp. smoothing with a trend gives more weight to recent, less to old.

Causal Forecasting Linear regression seeks a linear relationship between the input variable and the output quantity. R 2 measures the percentage of change in y that can be explained by changes in x.

Video sales of Shrek 2? Shrek did $500m at the box office, and sold almost 50 million DVDs & videos Shrek2 did $920m at the box office

Video sales of Shrek 2? Assume 1-1 ratio: ▫920/500 = 1.84 ▫1.84 * 50 million = 92 million videos? ▫Fortunately, not that dumb. January 3, 2005: 37 million sold! March analyst call: 40m by end Q1 March SEC filing: 33.7 million sold. Oops. May 10 Announcement: ▫In 2 nd public Q, missed earnings targets by 25%. ▫May 9, word started leaking ▫Stock dropped 16.7%

Lessons Learned Flooded market with DVDs Guaranteed Sales ▫Promised the retailer they would sell them, or else the retailer could return them ▫Didn’t know how many would come back 5 years ago ▫Typical movie 30% of sales in first week ▫Animated movies even lower than that 2004/ % in first week ▫ Shrek 2: 12.1m in first 3 days ▫American Idol ending, had to vote in first week

Washoe Gaming Win, What did they mean when they said it was down three quarters in a row?

Seasonality Seasonality is regular up or down movements in the data Can be hourly, daily, weekly, yearly Naïve method ▫N1: Assume January sales will be same as December ▫N2: Assume this Friday’s ticket sales will be same as last

Seasonal Factors Seasonal factor for May is 1.20, means May sales are typically 20% above the average Factor for July is 0.90, meaning July sales are typically 10% below the average

Seasonality & No Trend SalesFactor Spring200200/250 = 0.8 Summer350350/250 = 1.4 Fall300300/250 = 1.2 Winter150150/250 = 0.6 Total1,000 Avg1,000/4=250

Seasonality & No Trend If we expected total demand for the next year to be 1,100, the average per quarter would be 1,100/4=275 Forecast Spring275 * 0.8 = 220 Summer275 * 1.4 = 385 Fall275 * 1.2 = 330 Winter275 * 0.6 = 165 Total1,100

Trend & Seasonality Deseasonalize to find the trend 1.Calculate seasonal factors 2.Deseasonalize the demand 3.Find trend of deseasonalized line Project trend into the future 4.Project trend line into future 5.Multiply trend line by seasonal component.

Washoe Gaming Win, Looks like a downhill slide -Silver Legacy opened 95Q3 -Otherwise, upward trend Source: Comstock Bank, Survey of Nevada Business & Economics

Washoe Win Definitely a general upward trend, slowed 93-94

Cache Creek Thunder Valley CC Expands 9/11

2003Q Q3

2003Q Q3

DateQuarterWin , , , , , , , , , , , , , , , , ,734 QAvgIndex 1 240, , , , Total Avg. 262,382 For each Q: Compute Indexes Deseasonalize: Divide Win by Index 276,371 / = 250,755 Compute Avg Win for each Q Divide Avg by Total Avg to get Index: 240,562/262,382 =

periodWinDeseasonalized , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,343 Do LR on deseasonalized data intercept 185, slope 1, rsq Create Linear Forecasts Int + slope * period Linear 251, , , , , , , , , , , , , , , , , , , , ,011

Seasonal Forecast ,062 DeseasonalizedLinearForecast , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,596 Multiply Linear forecast by indexes 251,613 * = 277, ,291 * = 245,063 QIndex