Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
Development of a Reduced-Cost CP-FTMW Spectrometer Using Direct Digital Synthesis Ian Finneran Daniel Holland Brandon Carroll Geoffrey Blake California.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Characterisation and Control of Cold Chiral Compounds
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of 1- and 2-bromobutane
Michal M. Serafin, Sean A. Peebles
Presentation transcript:

Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel A. Obenchain, Amanda L. Steber, Ashley A. Osthoff, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL Charles J. Wurrey Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO Gamil A. Guirgis Department of Chemistry and Biochemistry, The College of Charleston, Charleston, SC

Goals Looking to construct a broadband microwave spectrometer – Full broadband 1 and SACI 2 type instruments are preferred, but are beyond the price range of research groups at smaller institutions. Need a cost effective spectrometer with improved bandwidth over a Balle-Flygare 3 instrument Determine the limits the instrument 1 G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S.T. Shipman, B.H. Pate, Rev. Sci. Instrum. 79 (2008) G.S. Grubbs, C.T. Dewberry, K.C. Etchison, K.E. Kerr, S.A. Cooke, Rev. Sci. Instrum. 78 (2007) T.J. Balle, W.H. Flygare, Rev. Sci. Instrum. 52 (1981) 33. 2

Introduction Chirped-Pulse Instrument – Adapting to smaller bandwidth Two recent molecules – 3,3-Difluoropentane – Divinyl Silane – Rotational constants – Dipole moments – Structure Performance of the instrument will be discussed 3

Schematic of Microwave Circuit AFG3251 Arbitrary Function Generator DC-240 MHz HP8673G MW Synthesizer GHz Amp RF amp Tektronix TDS5054B 500 MHz Oscilloscope Vacuum chamber LNA Molecular expansion Chirp 4

480 MHz Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer 5 10’’

Timing sequence LNA protection (~1  s) Gas pulse (~0.5 ms) Generate chirp (1  s) Detect FID (20  s) MW amp pulse (1  s) 240 MHz Tektronix AFG MHz Tektronix TDS 5054B Oscilloscope Iota One Pulsed Valve DriverHP 8673G GHz MW source 6 Quantum Composers QC9614+ SRS DG-535

OCS (carbonyl sulfide) J = 1 ← 0 transition Signal intensity ~50 mV (actually not that great, but did improve significantly, to over 1000 mV) 6/9/2009 7

Rotational Spectra Assignment 5 heavy atom backbone structures – Diethyldifluorosilane – Diethylsilane – Diethylgermane Predicted dipole moments – 3,3-Difluoropentane (first assigned on new instrument) µ total = D – Divinyl Silane µ total = D 8

Analyzing the Spectra Spectrum folding in reduced bandwidth gives rise to more challenges 5 MHz center frequency shift – Line frequency directly on oscilloscope – LabVIEW program to sort spectra Wastes sample and spectra, 475 MHz bandwidth Allows for compiled spectrum to be produced from 23 spectra in 7-10 hours 240 MHz step method – LabVIEW program compares multiple spectra offset by 240 MHz to determine absolute frequencies of transitions Accurately determine absolute frequencies Also allows for compiled spectrum to be produced from 46 spectra in about hours 9

3,3-Difluoropentane ab initio Structures and Energies anti-gauche+100 cm -1 anti-anti +18 cm -1 gauche-gauche 0 cm -1 gauche-gauche′+ 914 cm -1 MP2/ G (2d,2p) level of theory

3,3-Difluoropentane 0.1% in 2 atm He/Ne 150-2,500 shot average 10 Hz repetition rate 11

3,3-Difluoropentane 12 Frequency offset from center frequency (MHz) Intensity (V)

Rotational Constants gauche-gauche Spectroscopic Parameter ab initioNormal 13 C 1 (5) 13 C 2 (4) 13 C 3 A (MHz) (13) (6) (6)) (7) B (MHz) (11) (14) (14) (14) C (MHz) (5) (4) (4) (10) N20999 anti-gauche Spectroscopic Parameter ab initioNormal 13 C 1 13 C 2 13 C 3 13 C 4 13 C 5 A (MHz) (7) (6) (7) (8) (7) (7) B (MHz) (5) (6) (9) (9) (7) (10) C (MHz) (4) (6) (4) (5) (4) (5) N anti-anti Spectroscopic Parameter ab initioNormal A (MHz) (10) B (MHz) (7) C (MHz) (6) N

We believe internal rotation of terminal methyl groups causes fine splitting in observed rotational transitions for anti-anti conformer anti-anti conformer 2 21 ← ←1 11 Internal Rotation 1 MHz

15 Structural Determination gauche-gauche anti-gauche Bond length (Å)Bond angle (°)Dihedral angle (°) C 1 -C (5) C 1 -C 2 -C (3) C 1 -C 2 -C 3 -C (2) 1.539(21)111.1(36)176.7(10) C 2 -C (3) C 2 -C 3 -C (3) C 2 -C 3 -C 4 -C (5) 1.503(52)114.4(38)64.9(30) C 3 -C (2) C 3 -C 4 -C (3) 1.554(14)112.7(32) C 4 -C (6) r 0 fit r 0 fit r s fit r s fit 1.532(44) Bond length (Å)Bond angle (°)Dihedral angle (°) C 1 -C (6)C 1 -C 2 -C (2)C 1 -C 2 -C 3 -C 4 ±57.9(3 ) C 4 -C (10)C 3 -C 4 -C (10)C 2 -C 3 -C 4 -C 5±57.2(10) C 2 -C (3) C 2 -C 3 -C (4) C 3 -C (10)118.5(10)

Divinyl Silane Dipole moment predictions – µ total = D 0.4% in 2 atm He/Ne 5,000 shot average 4 Hz repetition rate 16

Divinyl Silane ab initio Structures Conformer I +0 cm -1 Conformer II cm -1 Conformer III +141 cm MP2/ G(2d,2p) level of theory

Intensity (V) Frequency (MHz) Compiled Broadband Spectrum 18 Conformer I Conformer II

Divinyl Silane Rotational Constants Conformer II Spectroscopic Parameterab initioNormal 29 Si 30 Si A (MHz) (19) (11) (16) B (MHz) (13) (7) (6) C (MHz) (10) (5) (4) N1777 Conformer I Spectroscopic Parameterab initioNormal 29 Si 30 Si A (MHz) (26) (22) (9) B (MHz) (7) (20) (9) C (MHz) (8) (12) (6) N1566

Divinyl Silane & 3,3-Difluoropentane Dipole Moments Conformer IConformer II µ a (D)00.01(1) µ b (D)0.6138(7)0.715(15) µ c (D)00.02(2) µ total (D)0.6138(7)0.715(15) (21)2.4186(40)μ total (D) (19)0μ c (D) (20)2.4186(40)μ b (D) (29)0μ a (D) anti-gauchegauche-gaucheDipole Component 3,3-Difluoropentane Divinyl Silane Measured Stark shifts on Balle-Flygare 1 cavity instrument at EIU 1 T.J. Balle, W.H. Flygare, Rev. Sci. Instrum. 52 (1981) 33.

3,3-Difluoropentane & Divinyl Silane Rotational transition assignment for 3 conformers of 3,3-Difluoropentane and 2 conformers of Divinyl Silane – Structural determinations – Dipole moments – Conformer analysis 21

480 MHz CP-FTMW Construction of a 480 MHz Chirped-Pulse Fourier Transform Microwave Spectrometer Observable 13 C isotopologues and weakly- bound complex transitions in 150 gas pulses Compiled broadband spectrum ( GHz) in 16 hours – 5,000 shot average 22 7/2-5/2 9/2-7/2 7/2-5/2 9/2-7/2 CH 35 ClF 2 -H 2 O Upper state Lower state

480 MHz CP-FTMW Broadband frequencies are reproducible on cavity instrument – 4 kHz for strong transitions (S/N>5:1) – 6 kHz less intense transitions (S/N<5:1) Line widths – kHz (FWHM) Resolution – 80 kHz minimum peak separation 23

480 MHz CP-FTMW Unable to achieve multiple chirps per gas pulse – Limitation of our arbitrary function generator (AFG 3251) 2 Nozzles (General Valve Series 9) – Increases S/N by factor of ≈3 in initial tests 24

25 Intensity varies at different points in the spectrum – Center frequency – Frequency in the chirp Intensity Variation Intensity (V) Frequency Offset (MHz) MHz /2-1/2 CH 81 BrF MHz /2-1/2 CH 79 BrF MHz /2-1/2 CH 81 BrF MHz MHz

Additions to the CP-FTMW Ion source – Pulsed-discharge nozzle o-benzyne 1 Halogenated benzene derivatives 2 – Electron gun (future project) Laser ablation – Pt and Pd containing species 26 1 S.G. Kukolich, C. Tanjaroon, M.C. McCarthy, P. Thaddeus, J. Chem Phys. 119 (2003) G.H. Sutter, H Dreizler, Zeitschrift fur Naturforschung. A, A journal of physical science. 56 (2001) 425

Acknowledgements Prof. Brooks Pate, University of Virginia – Justin Neill Prof. Steve Cooke, University of North Texas – Smitty Grubbs NSF Research at Undergraduate Institutions CHE

30