Leo Lam © 2010-2012 Signals and Systems EE235. Leo Lam © 2010-2012 Today’s menu Good weekend? System properties –Time Invariance –Linearity –Superposition!

Slides:



Advertisements
Similar presentations
Leo Lam © Signals and Systems EE235. Leo Lam © Pet Q: Has the biomedical imaging engineer done anything useful lately? A: No, he's.
Advertisements

Leo Lam © Signals and Systems EE235. Leo Lam © Happy Tuesday! Q: What is Quayle-o-phobia? A: The fear of the exponential (e).
Characteristics of a Linear System 2.7. Topics Memory Invertibility Inverse of a System Causality Stability Time Invariance Linearity.
Leo Lam © Signals and Systems EE235 Lecture 16.
Leo Lam © Signals and Systems EE235 October 14 th Friday Online version.
Leo Lam © Signals and Systems EE235. Transformers Leo Lam ©
Lecture 5: Linear Systems and Convolution
Leo Lam © Signals and Systems EE235. Leo Lam © Fourier Transform Q: What did the Fourier transform of the arbitrary signal say to.
Leo Lam © Signals and Systems EE235 Lecture 27.
Leo Lam © Signals and Systems EE235 Leo Lam © Today’s menu Exponential response of LTI system LCCDE Midterm Tuesday next week.
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu Homework 2 due now Convolution!
Leo Lam © Signals and Systems EE235. Leo Lam © Convergence Two mathematicians are studying a convergent series. The first one says:
Leo Lam © Signals and Systems EE235. Leo Lam © Chicken Why did the chicken cross the Möbius Strip? To get to the other…er…um…
Leo Lam © Signals and Systems EE235. Leo Lam © Arthur’s knights Who was the largest knight at King Arthur’s round table? Sir Cumfrence,
Leo Lam © Signals and Systems EE235. Leo Lam © Arthur’s knights Who was the largest knight at King Arthur’s round table? Sir Cumfrence,
Leo Lam © Signals and Systems EE235 Today’s Cultural Education: Liszt: Von der Wiege bis zum Grabe, Symphonic Poem No. 13.
Leo Lam © Signals and Systems EE235. Leo Lam © x squared equals 9 x squared plus 1 equals y Find value of y.
Leo Lam © Signals and Systems EE235. Leo Lam © Merry Christmas! Q: What is Quayle-o-phobia? A: The fear of the exponential (e).
Leo Lam © Signals and Systems EE235 Lecture 14.
1 Signals & Systems Spring 2009 Week 3 Instructor: Mariam Shafqat UET Taxila.
Leo Lam © Signals and Systems EE235 Lecture 30.
EE3010 SaS, L7 1/19 Lecture 7: Linear Systems and Convolution Specific objectives for today: We’re looking at continuous time signals and systems Understand.
Recall: RC circuit example x y x(t) R C y(t) + _ + _ assuming.
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
Leo Lam © Signals and Systems EE235. Leo Lam © Pet Q: Has the biomedical imaging engineer done anything useful lately? A: No, he's.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 313 Linear Systems and Signals Spring 2013 Continuous-Time.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Convolution Definition Graphical Convolution Examples Properties.
Leo Lam © Signals and Systems EE235 Oh beer… An infinite amount of mathematicians walk into a bar. The first one orders a beer. The second.
Leo Lam © Signals and Systems EE235. Summary: Convolution Leo Lam © Draw x() 2.Draw h() 3.Flip h() to get h(-) 4.Shift forward.
BYST CPE200 - W2003: LTI System 79 CPE200 Signals and Systems Chapter 2: Linear Time-Invariant Systems.
Representation of CT Signals (Review)
Leo Lam © Signals and Systems EE235. Leo Lam © Stanford The Stanford Linear Accelerator Center was known as SLAC, until the big earthquake,
Leo Lam © Signals and Systems EE235 Lecture 20.
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu Yesterday: Exponentials Today: Linear, Constant-Coefficient Differential.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Causality Linearity Time Invariance Temporal Models Response to Periodic.
Operations on Continuous-Time Signals
Leo Lam © Signals and Systems EE235. Leo Lam © Surgery Five surgeons were taking a coffee break and were discussing their work. The.
Leo Lam © Signals and Systems EE235 Leo Lam © Working with computers.
4. Introduction to Signal and Systems
Leo Lam © Signals and Systems EE235 KX5BQY.
Leo Lam © Signals and Systems EE235 Leo Lam.
1 LTI Systems; Convolution September 4, 2000 EE 64, Section 1 ©Michael R. Gustafson II Pratt School of Engineering.
Leo Lam © Signals and Systems EE235 Lecture 25.
Description and Analysis of Systems Chapter 3. 03/06/06M. J. Roberts - All Rights Reserved2 Systems Systems have inputs and outputs Systems accept excitation.
Chapter 2. Signals and Linear Systems
Leo Lam © Signals and Systems EE235. Leo Lam © Today’s menu LTI System – Impulse response Lead in to Convolution.
Leo Lam © Signals and Systems EE235 Lecture 26.
EE 309 Signal and Linear System Analysis
EE 309 Signal and Linear System Analysis
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 26 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Lecture 13 Leo Lam ©
Signal and Systems Chapter 2: LTI Systems
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Today’s Cultural Education:
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Signals and Systems EE235 Leo Lam ©
System Properties Especially: Linear Time Invariant Systems
Signals and Systems EE235 Leo Lam ©
Signals and Systems EE235 Leo Lam ©
LECTURE 07: CONVOLUTION FOR CT SYSTEMS
Signals and Systems EE235 Lecture 14 Leo Lam ©
Signals and Systems EE235 Leo Lam Leo Lam ©
Presentation transcript:

Leo Lam © Signals and Systems EE235

Leo Lam © Today’s menu Good weekend? System properties –Time Invariance –Linearity –Superposition!

Time invariance Leo Lam © The system behaves the same no matter when you use it Input is delayed by t 0 seconds, output is the same but delayed t 0 seconds If then System T Delay t 0 System T Delay t 0 x(t) x(t-t 0 ) y(t) y(t-t 0 ) T[x(t-t 0 )] System 1 st Delay 1 st =

Time invariance example Leo Lam © Still you… T(x(t)) = 3x(t - 5) 1.y(t) = 3x(t-5) 2.y(t – t 0 ) = 3x(t-t 0 -5) 3.T(x(t – t 0 )) = 3x(t-t 0 -5) 4.y(t-t 0 )) = T(x(t-t 0 )) Time invariant! KEY: In step 2 you replace t by t-t 0. In step 3 you replace x(t) by x(t-t 0 ).

Time invariance example Leo Lam © Still you… T(x(t)) = x(5t) 1.y(t) = x(5t) 2.y(t – 3) = x(5(t-3)) = x(5t – 15) 3.T(x(t-3)) = x(5t- 3) 4.Oops… Not time invariant! Does it make sense? KEY: In step 2 you replace t by t-t 0. In step 3 you replace x(t) by x(t-t 0 ). Shift then scale

Time invariance example Leo Lam © Graphically: T(x(t)) = x(5t) 1.y(t) = x(5t) 2.y(t – 3) = x(5(t-3)) = x(5t – 15) 3.T(x(t-3)) = x(5t- 3) t 0 system input x(t) 5 t 0 system output y(t) = x(5t) 1 t shifted system output y(t-3) = x(5(t-3)) t shifted system input x(t-3) t system output for shifted system input T(x(t-3)) = x(5t-3)

Time invariance example Leo Lam © Integral 1.First: 2.Second: 3.Third: 4.Lastly: Time invariant! KEY: In step 2 you replace t by t-t 0. In step 3 you replace x(t) by x(t-t 0 ).

System properties Leo Lam © Linearity: A System is Linear if it meets the following two criteria: Together…superposition Ifand Then If Then “System Response to a linear combination of inputs is the linear combination of the outputs.” Additivity Scaling

Linearity Leo Lam © Order of addition and multiplication doesn’t matter. = System T System T Linear combination System 1 st Combo 1 st Linear combination

Linearity Leo Lam © Positive proof –Prove both scaling & additivity separately –Prove them together with combined formula Negative proof –Show either scaling OR additivity fail (mathematically, or with a counter example) –Show combined formula doesn’t hold

Linearity Proof Leo Lam © Combo Proof Step 1: find y i (t) Step 2: find y_combo Step 3: find T{x_combo} Step 4: If y_combo = T{x_combo} Linear System T System T Linear combination System 1 st Combo 1 st Linear combination

Linearity Example Leo Lam © Is T linear? T x(t)y(t)=cx(t) Equal  Linear

Linearity Example Leo Lam © Is T linear? Not equal  non-linear T x(t)y(t)=(x(t)) 2

Linearity Example Leo Lam © Is T linear? Not equal  non-linear T x(t)y(t)=x(t)+5

Linearity Example Leo Lam © Is T linear? =

Linearity unique case Leo Lam © How about scaling with 0? If T{x(t)} is a linear system, then zero input must give a zero output A great “negative test”

Spotting non-linearity Leo Lam © multiplying x(t) by another x() y(t)=g[x(t)] where g() is nonlinear piecewise definition of y(t) in terms of values of x, e.g. (although sometimes ok) NOT Formal Proofs!

Superposition Leo Lam © Superposition is… Weighted sum of inputs  weighted sum of outputs “Divide & conquer”

Superposition example Leo Lam © Graphically 19 x 1 (t) T 1 1 y 1 (t) x 2 (t) T 1 1 y 2 (t) T 1 ? 2 y 1 (t) 1 -y 2 (t)

Superposition example Leo Lam © Slightly aside (same system) Is it time-invariant? No idea: not enough information Single input-output pair cannot test positively 20 x 1 (t) T 1 1 y 1 (t) x 2 (t) T 1 1 y 2 (t)

Superposition example Leo Lam © Unique case can be used negatively 21 x 1 (t) T 1 1 y 1 (t) x 2 (t) T 1 y 2 (t) 1 -2 NOT Time Invariant: Shift by 1  shift by 2 x 1 (t)=u(t) S y 1 (t)=tu(t) NOT Stable: Bounded input gives unbounded output

Summary: System properties –Causal: output does not depend on future input times –Invertible: can uniquely find system input for any output –Stable: bounded input gives bounded output –Time-invariant: Time-shifted input gives a time-shifted output –Linear: response to linear combo of inputs is the linear combo of corresponding outputs Leo Lam ©