Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions.

Slides:



Advertisements
Similar presentations
Guin-Dar Lin, Luming Duan University of Michigan 2009 March Meeting G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M.
Advertisements

Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Emergent Majorana Fermion in Cavity QED Lattice
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
Putting Weirdness to Use
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Generation of short pulses
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.

Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Guillermina Ramirez San Juan
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Crystal Lattice Vibrations: Phonons
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan.
Classical Antiferromagnets On The Pyrochlore Lattice S. L. Sondhi (Princeton) with R. Moessner, S. Isakov, K. Raman, K. Gregor [1] R. Moessner and S. L.
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Max Planck Institut of Quantum Optics (Garching) New perspectives on Thermalization Aspen (NON) THERMALIZATION OF 1D SYSTEMS: numerical studies.
1 Worm Algorithms Jian-Sheng Wang National University of Singapore.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Glass Phenomenology from the connection to spin glasses: review and ideas Z.Nussinov Washington University.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
The Ising Model Mathematical Biology Lecture 5 James A. Glazier (Partially Based on Koonin and Meredith, Computational Physics, Chapter 8)
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Quantum Computation With Trapped Ions Brian Fields.
A simple nearest-neighbour two-body Hamiltonian system for which the ground state is a universal resource for quantum computation Stephen Bartlett Terry.
The Theory of Effective Hamiltonians for Detuned Systems
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
KITPC Max Planck Institut of Quantum Optics (Garching) Tensor networks for dynamical observables in 1D systems Mari-Carmen Bañuls.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Christopher Monroe Joint Quantum Institute and Department of Physics NIST and University of Maryland Quantum Computation and Simulation.
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
Quantum Boltzmann Machine
Quantum Gates and Quantum Simulations with Atoms
Arnau Riera, Grup QIC, Universitat de Barcelona Universität Potsdam 10 December 2009 Simulation of the Laughlin state in an optical lattice.
Jiří Minář Centre for Quantum Technologies
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
A10 Designing spin-spin interactions in cold ion crystals
A10 Designing spin-spin interactions in cold ion crystals
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Fiber-coupled Point Paul Trap
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
University of California, Berkeley
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Quantum Simulations with Yb + crystal ~5  m Trapped Atomic Ions

Raman beatnotes:  HF   † upper sidebands frequency  HF +  carrier lower sidebands  HF  global spin-dependent oscillating force

† † phonons interaction between qubits (entangling gates etc..) evolution operator

“Adiabatically eliminate” phonons: |  k | >>    “SLOW MOLMER” General effective Hamiltonian theory: D. F. James, Canadian J. Phys. 85, 625 (2007) upper sidebands frequency carrier lower sidebands  kk sideband linewidth =

Raman beatnote:   HF   upper sidebands frequency  HF +  carrier lower sidebands  HF   HF  (  )  HF control normal mode eigenvectors (ion i mode m ) Ising Model global spin-dependent oscillating force

Quantum Simulation: What is it?  Describes N interacting systems, each system having D degrees of freedom D N coupled differential equations

Physical System  Trial H Physical System  Choose H Two approaches (1) (2)

Quantum simulations with trapped ions Porras and Cirac, PRL 92, (2004) Deng, Porras, Cirac, PRA 72, (2005) Taylor and Calarco, PRA 78, (2008) A. Friedenauer, et al., Nature Phys. 4, 757 (2008) K. Kim et al., Phys. Rev. Lett. 102, (2009) K. Kim et al., Nature 465, 590 (2010) E. Edwards et al., Phys. Rev. B 82, (2010) J. Barreiro et al., Nature 470, (2011) R. Islam, et al., Nature Comm. 2, 377 (2011) B. Lanyon et al., Science 334, 57 (2011) J. Britton et al., Nature 484, 489 (2012) A. Khromova et al., PRL 108, (2012) R. Islam, et al., Science 340, 583 (2013) P. Richerme, et al., ArXiv (2013) P. Richerme, et al., ArXiv (2013)

Frustration and Entanglement AFM Spin Liquids

1936: Giauque and Stout, “The Entropy of Water and the Third Law of Thermodynamics. Heat Capacity of Ice from 15 to 273°K” Zero-point entropy in 'spin ice’, A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan and B. S. Shastry, Nature 399, 333 (1999) (pyrochloric “spin ice” Dy 2 Ti 2 O 7 ) 1945: L. Pauling The Nature of the Chemical Bond (Cornell Univ. Press), pp Ice

Control Range of Interaction! Theory Power Law Exponent  upper sidebands frequency  HF carrier lower sidebands   COM tune laser here tune laser here

Initialization Cooling Optical Pumping Spins along y (or against y) Detection Measure each spin along x time Adiabatic Quantum Simulation

A. Friedenauer, et al., Nature Phys. 4, 757 (2008) N=2

B/J rms  (  s) B/J rms  (  s) Exact Ground State Measured Populations J 12 =J 13 =J 23 < 0 Initialization Cooling Optical Pumping Spins along y Detection Measure each spin along x time P ↓↓↓ P ↓↓↑ P ↓↑↓ P ↓↑↑ P ↑↓↓ P ↑↓↑ P ↑↑↓ P ↑↑↑ P ↓↓↓, P ↑↑↑ E. Edwards, et al., Phys. Rev. B 82, (2010) N=3

B/J rms  (  s) B/J rms  (  s) J 12 =J 13 =J 23 > P ↓↓↓ P ↓↓↑ P ↓↑↓ P ↓↑↑ P ↑↓↓ P ↑↓↑ P ↑↑↓ P ↑↑↑ P ↓↓↓, P ↑↑↑ Initialization Cooling Optical Pumping Spins along y Detection Measure each spin along x time 0.2 E. Edwards, et al., Phys. Rev. B 82, (2010) Exact Ground State Measured Populations N=3

FM Ferromagnetic couplings FM J 12 =J 13 =J 23 < 0 K. Kim, et al., Nature 465, 590 (2010) |  = |  +|  ground state is entangled P 0 P 1 P 2 P 3 B x =0 |    = |  no entanglement |    = |  no entanglement Bx0Bx0 P 0 P 1 P 2 P 3 symmetry breaking field B x N=3

Competing AFM: spin frustration AFM J 12 =J 13 =J 23 > 0 ? K. Kim, et al., Nature 465, 590 (2010) |  = |  +|  +|  +|  +|  +|  ground state is entangled B x =0 P 0 P 1 P 2 P 3 |    = |  +|  +|  still entangled! symmetry breaking field B x |    = |  +|  +|  still entangled! Bx0Bx0 P 0 P 1 P 2 P 3 Frustration  Entanglement N=3

Emergence of ferromagnetism vs. # spins N (all FM couplings: J ij <0) |mx||mx| R. Islam et al., Nature Communications 2, 377 (2011) t(ms) B/|J| N

Ion index, j Time/τ B Long Range Antiferromagnetism (N=10) pair correlation G ,j = J i,j  1 |i  j| 1.1

Frustration and energy gaps Short range: exponent 1.5 Long range: exponent 0.5 Ground state Neel ordered: Abandoning adiabaticity probes frustration Low-lying energy states in antiferromagnetic model

Structure Function Spatial frequency k (2  ) Short range Long range R. Islam et al., Science 340, 583 (2013) Frustration of Magnetic Order (N=10)

Antiferromagnetic Néel order of N=10 spins All in state  2600 runs,  =1.12 AFM ground state order 222 events 441 events out of 2600 = 17% Prob of any state at random =2 x (1/2 10 ) = 0.2% 219 events R. Islam et al., Science 340, 583 (2013) All in state 

First Excited States (Pop. ~ 2% each)

Second Excited States (Pop. ~ 1% each)

Distribution of all 2 10 = 1024 states Probability Nominal AFM state B << J Probability Initial paramagnetic state B >> J 0 R. Islam et al., Science 340, 583 (2013)

Distribution of states ordered by energy (N=10) Energy/J 0 R. Islam et al., Science 340, 583 (2013)  = 1.12  = 0.86 Thermalization?? Cumulitive Prob

AFM order of N=14 spins (16,384 configurations)

= = At B y = 0: AFM Ising with AXIAL field

AFM Ising with AXIAL field

AFM Ground States 2-Bright Ground State 1-Bright Ground States 0-Bright Ground State P. Richerme, et al., ArXiv (2013) AFM Ising with AXIAL field

0-Bright Ground State 1-Bright Ground States 2-Bright Ground States 3-Bright Ground States 4-Bright Ground States 5-Bright (AFM) Ground States System exhibits a complete devil's staircase for N → ∞ P. Bak and R. Bruinsma, PRL 49, 249 (1982) P. Richerme, et al., ArXiv (2013) AFM Ising with AXIAL field

Modulate transverse B field to drive transitions between ground and excited states time ByBy J x i,j amplitude Dynamics: many-body spectroscopy C. Senko et. al., in preparation

time ByBy J x i,j amplitude Start from Drive to N = 6 Dynamics: many-body spectroscopy C. Senko et. al., in preparation

Start from Drive to N = 5 time ByBy J x i,j amplitude Dynamics: many-body spectroscopy C. Senko et. al., in preparation

Start from Drive to N = 5 Dynamics: many-body spectroscopy C. Senko et. al., in preparation

N = 5 Modulation frequency (kHz) Measurement Theory Spin states in order of energy Dynamics: many-body spectroscopy Complete spectrum of 5 spins C. Senko et. al., in preparation

C. Senko et. al., in preparation Dynamics: many-body spectroscopy N = 12

Modulation frequency (kHz) Measurement Theory C. Senko et. al., in preparation Dynamics: many-body spectroscopy N = 12

FM Population  = Drive system with all frequencies simultaneously (and control relative phases) Create equal superposition of single-spin flip states (W state) Dynamics: quantum engineering (FM: N=4) C. Senko et. al., in preparation

time ByBy J x i,j amplitude ++ +  = entangled  = 340°  = 160° Dynamics: quantum engineering (FM: N=4) C. Senko et. al., in preparation

“Ising Quench” (a)Prepare (↓+↑)  N “kT =  ” (b)Meaure correlations C midpoint, j (t) Dynamics: “light cone” of interaction propagation with long range interactions Theory: Z. Gong and A. Gorshkov (JQI)  =2.5 N=41  =1.5  =0.5 N=11 J 0 =0.5kHz  =0.81 shorter range longer range N=11 J 0 =0.5kHz  =1.3 neutrals (nearest-neighbor interactions): M. Cheneau et al., Nature 481, 484 (2012) E.H. Lieb and D.W. Robinson, “The finite group velocity of quantum spin systems,” Commun. Math. Phys. 28, 251–257 (1972).

Dynamics: L-R bounds with long range interactions Preliminary Data N=11 spins

Formation of localized defects: nonequilibrium dynamics M. Knap, E. Demler, I. Bloch (in preparation) XY model Spin-1: topological excitations Programmable fully connected spin network Up next… N beams, each with N spectral components interactions S. Korenblit, et al., New. J. Phys. 14, (2012)

Example: programming a 2D kagome lattice with a linear chain of 36 ions atom # spectral component Theory J. Garcia-Ripoll et al., Phys. Rev. A 71, (2005) S. Korenblit et al., ArXiv (2012)

GET MORE SPINS!! B/J = 0.01 B/J = 5 16 spin AFM simulation18 spin FM simulation m x = total spin along x Probability

N=16 () N=1 N=0 () Photon count histograms for N=16 ions # photons Global Spin Detection: 16 ions N=8

Quantum simulation with N=16 ions B>>J B ~ J B << J Ferro couplings Quantum Phase Transition Decreasing B/J FM/AFM order paramagnetic polarization Anti-ferro couplings G(1,j) Distance from 1 st ion, j B ~ J B << J N=16 () N=0 () Theoretical photon count histograms # photons N=8 B>>J Ferro couplings

~few 100 Be + ions in a Penning Trap J. Britton et al., Nature 484, 489 (2012) Quantum Hard-drive?

Going Cold: N>50

GaTech Res. Inst. Al/Si/SiO 2 Maryland/LPS GaAs/AlGaAs Sandia Nat’l Lab: Si/SiO 2 NIST-Boulder Au/Quartz

a (C.O.M.) b (stretch) c (Egyptian) d (stretch-2) Mode competition – example: axial modes, N = 4 ions Fluorescence counts Raman Detuning  R (MHz) a b c d a b c d 2a c-a b-a 2b,a+c b+c a+b 2a c-a b-a 2b,a+c b+c a+b carrier axial modes only mode amplitudes cooling beam D. Kielpinski, CM, D. Wineland, Nature 417, 709 (2002)

Large scale vision (10 3 – 10 6 atomic qubits?) New hierarchical and modular quantum computer architecture Different model for circuit optimization Error correction thresholds exist! (R. Raussendorf) C.M., et al., ArXiv (2012) Hz then, ~1 Hz now, ~1 kHz soon

ENIAC (1946)Solid-state transistor (1947)

right idea, wrong platform