Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.

Slides:



Advertisements
Similar presentations
C280, Computer Vision Prof. Trevor Darrell Lecture 2: Image Formation.
Advertisements

Last 4 lectures Camera Structure HDR Image Filtering Image Transform.
CS 691 Computational Photography Instructor: Gianfranco Doretto 3D to 2D Projections.
More Mosaic Madness : Computational Photography Alexei Efros, CMU, Fall 2011 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from.
RANSAC and mosaic wrap-up cs195g: Computational Photography James Hays, Brown, Spring 2010 © Jeffrey Martin (jeffrey-martin.com) most slides from Steve.
Computer Vision CS 776 Spring 2014 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides)
Paris town hall.
Projection Readings Szeliski 2.1. Projection Readings Szeliski 2.1.
Image formation and cameras CSE P 576 Larry Zitnick Many slides courtesy of Steve Seitz.
Camera Models A camera is a mapping between the 3D world and a 2D image The principal camera of interest is central projection.
Announcements. Projection Today’s Readings Nalwa 2.1.
Used slides/content with permission from
Lecture 5: Projection CS6670: Computer Vision Noah Snavely.
Lecture 7: Image Alignment and Panoramas CS6670: Computer Vision Noah Snavely What’s inside your fridge?
Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Talk today on “Lightfield photography” by Ren.
CS485/685 Computer Vision Prof. George Bebis
Lecture 5: Cameras and Projection CS6670: Computer Vision Noah Snavely.
Lecture 6: Image transformations and alignment CS6670: Computer Vision Noah Snavely.
Camera model Relation between pixels and rays in space ?
Announcements Mailing list Project 1 test the turnin procedure *this week* (make sure it works) vote on best artifacts in next week’s class Project 2 groups.
Computer Vision : CISC4/689
Lecture 13: Projection, Part 2
Lecture 12: Projection CS4670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 6: Image Warping and Projection CS6670: Computer Vision Noah Snavely.
Single-view geometry Odilon Redon, Cyclops, 1914.
The Pinhole Camera Model
Panoramas and Calibration : Rendering and Image Processing Alexei Efros …with a lot of slides stolen from Steve Seitz and Rick Szeliski.
CS223b, Jana Kosecka Rigid Body Motion and Image Formation.
More Mosaic Madness : Computational Photography Alexei Efros, CMU, Fall 2006 © Jeffrey Martin (jeffrey-martin.com) with a lot of slides stolen from.
CS4670 / 5670: Computer Vision KavitaBala Lecture 15: Projection “The School of Athens,” Raphael.
The Camera : Computational Photography Alexei Efros, CMU, Fall 2008.
Camera parameters Extrinisic parameters define location and orientation of camera reference frame with respect to world frame Intrinsic parameters define.
Cameras, lenses, and calibration
Image formation and cameras
Perspective projection
EEM 561 Machine Vision Week 10 :Image Formation and Cameras
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
776 Computer Vision Jan-Michael Frahm Fall Camera.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
CS559: Computer Graphics Lecture 9: Projection Li Zhang Spring 2008.
Geometric Camera Models
Single-view geometry Odilon Redon, Cyclops, 1914.
CS-498 Computer Vision Week 7, Day 2 Camera Parameters Intrinsic Calibration  Linear  Radial Distortion (Extrinsic Calibration?) 1.
Projection Readings Nalwa 2.1 Szeliski, Ch , 2.1
1 Chapter 2: Geometric Camera Models Objective: Formulate the geometrical relationships between image and scene measurements Scene: a 3-D function, g(x,y,z)
Image Formation and Cameras CSE 455 Linda Shapiro 1.
Single-view geometry Odilon Redon, Cyclops, 1914.
Digital Image Processing Additional Material : Imaging Geometry 11 September 2006 Digital Image Processing Additional Material : Imaging Geometry 11 September.
CS559: Computer Graphics Lecture 9: 3D Transformation and Projection Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Announcements Project 1 grading session this Thursday 2:30-5pm, Sieg 327 –signup ASAP:signup –10 minute slot to demo your project for a TA »have your program.
Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.
Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 18: Cameras CS4670 / 5670: Computer Vision KavitaBala Source: S. Lazebnik.
CSE 185 Introduction to Computer Vision
CS682, Jana Kosecka Rigid Body Motion and Image Formation Jana Kosecka
Computer vision: models, learning and inference
CS5670: Computer Vision Lecture 9: Cameras Noah Snavely
Jan-Michael Frahm Fall 2016
Announcements Project 1 Project 2
Announcements Project 1 Project 2 Due Wednesday at 11:59pm
CS 790: Introduction to Computational Vision
Overview Pin-hole model From 3D to 2D Camera projection
Lecture 13: Cameras and geometry
Geometric Camera Models
Lecturer: Dr. A.H. Abdul Hafez
Announcements Midterm out today Project 1 demos.
Projection Readings Nalwa 2.1.
Credit: CS231a, Stanford, Silvio Savarese
Projection Readings Szeliski 2.1.
Camera model and calibration
Presentation transcript:

Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael

Projection properties Many-to-one: any points along same ray map to same point in image Points → points Lines → lines (collinearity is preserved) – But line through focal point projects to a point Planes → planes (or half-planes) – But plane through focal point projects to line

Projection properties Parallel lines converge at a vanishing point – Each direction in space has its own vanishing point – But parallels parallel to the image plane remain parallel

Questions?

Camera parameters How many numbers do we need to describe a camera? We need to describe its pose in the world We need to describe its internal parameters

A Tale of Two Coordinate Systems “The World” Camera x y z v w u o COP Two important coordinate systems: 1. World coordinate system 2. Camera coordinate system

Camera parameters To project a point (x,y,z) in world coordinates into a camera First transform (x,y,z) into camera coordinates Need to know – Camera position (in world coordinates) – Camera orientation (in world coordinates) Then project into the image plane – Need to know camera intrinsics – We mostly saw this operation last time These can all be described with matrices

Projection equation The projection matrix models the cumulative effect of all parameters Useful to decompose into a series of operations projectionintrinsicsrotationtranslation identity matrix Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world coords Rotation R of the image plane focal length f, principle point (x’ c, y’ c ), pixel size (s x, s y ) blue parameters are called “extrinsics,” red are “intrinsics” The definitions of these parameters are not completely standardized –especially intrinsics—varies from one book to another

Extrinsics How do we get the camera to “canonical form”? – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards) 0 Step 1: Translate by -c

Extrinsics How do we get the camera to “canonical form”? – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards) 0 Step 1: Translate by -c How do we represent translation as a matrix multiplication?

Extrinsics How do we get the camera to “canonical form”? – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards) 0 Step 1: Translate by -c Step 2: Rotate by R 3x3 rotation matrix

Extrinsics How do we get the camera to “canonical form”? – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards) 0 Step 1: Translate by -c Step 2: Rotate by R

Perspective projection (intrinsics) in general, : aspect ratio (1 unless pixels are not square) : skew (0 unless pixels are shaped like rhombi/parallelograms) : principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin) (upper triangular matrix) (converts from 3D rays in camera coordinate system to pixel coordinates)

Focal length Can think of as “zoom” Related to field of view 24mm50mm 200mm 800mm

Projection matrix (t in book’s notation) translationrotationprojection intrinsics

Projection matrix 0 = (in homogeneous image coordinates)

Questions?

Perspective distortion Problem for architectural photography: converging verticals Source: F. Durand

Perspective distortion Problem for architectural photography: converging verticals Solution: view camera (lens shifted w.r.t. film) Source: F. Durand Tilting the camera upwards results in converging verticals Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building Shifting the lens upwards results in a picture of the entire subject

Perspective distortion Problem for architectural photography: converging verticals Result: Source: F. Durand

Perspective distortion What does a sphere project to? Image source: F. Durand

Perspective distortion The exterior columns appear bigger The distortion is not due to lens flaws Problem pointed out by Da Vinci Slide by F. Durand

Perspective distortion: People

Distortion Radial distortion of the image – Caused by imperfect lenses – Deviations are most noticeable for rays that pass through the edge of the lens No distortionPin cushionBarrel

Correcting radial distortion from Helmut DerschHelmut Dersch

Distortion

Modeling distortion To model lens distortion – Use above projection operation instead of standard projection matrix multiplication Apply radial distortion Apply focal length translate image center Project to “normalized” image coordinates

Other types of projection Lots of intriguing variants… (I’ll just mention a few fun ones)

360 degree field of view… Basic approach – Take a photo of a parabolic mirror with an orthographic lens (Nayar) – Or buy one a lens from a variety of omnicam manufacturers… See

Tilt-shift Titlt-shift images from Olivo Barbieri and Photoshop imitationsOlivo Barbieriimitations

Rollout Photographs © Justin Kerr Rotating sensor (or object) Also known as “cyclographs”, “peripheral images”