A.B. VIIRS (Nov. 20, 2013).

Slides:



Advertisements
Similar presentations
NOAA National Geophysical Data Center
Advertisements

Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Sentinel-3 Validation Team (S3VT) Meeting ESA/ESRIN, Frascati, Italy, th November 2013 BOUSSOLE David ANTOINE CNRS-LOV, France now at: Curtin University,
UPRM Lidar lab for atmospheric research 1- Cross validation of solar radiation using remote sensing equipment & GOES Lidar and Ceilometer validation.
Sherwin D. Ladner 1, Robert A. Arnone 2, Richard W. Gould, Jr. 2, Alan Weidemann 2, Vladimir I. Haltrin 2, Zhongping Lee 2, Paul M. Martinolich 3, and.
Satellite Ocean Color Overview Dave Siegel – UC Santa Barbara With help from Chuck McClain, Mike Behrenfeld, Bryan Franz, Jim Yoder, David Antoine, Gene.
Exploiting New Sensors on NOAA NPP – VIIRS for Ocean Applications Beyond the VIIRS -- SST And Ocean Color University of Southern Mississippi May Arnone.
GEOCAPE Matchups – September 10, Sept 10, 2013 NPP – VIIRS – Chlorophyll 1 Station5 In plume.
Characterization of radiance uncertainties for SeaWiFS and Modis-Aqua Introduction The spectral remote sensing reflectance is arguably the most important.
Evaluation of atmospheric correction algorithms for MODIS Aqua in coastal regions Goyens, C., Jamet, C., and Loisel, H. Atmospheric correction workshop.
Radiometric Calibration of Current and Future Ocean Color Satellite Sensors R. Foster, S. Hlaing, A. Gilerson, S. Ahmed Robert Foster, ME, LEED AP Optical.
NRL09/21/2004_Davis.1 GOES-R HES-CW Atmospheric Correction Curtiss O. Davis Code 7203 Naval Research Laboratory Washington, DC 20375
Seasonal to Interannual Variability in Phytoplankton Biomass and Diversity on the New England Shelf: In Situ Time Series for Validation and Exploration.
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
Cross Validation of Thermal Infrared Remotely Sensed Data In-Flight Using Automated Validation Sites © 2010 California Institute of Technology. Government.
Evaluation of Recent VIIRS Sensor Performance in the Coastal Ocean
The MODIS Level 3 Near-IR Water Vapor and Cirrus Reflectance Data Products and the Modeling Needs Bo-Cai Gao & Rong-Rong Li Remote Sensing Division, Code.
Satellite Imagery ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Introduction to Remote Sensing and Air Quality Applications.
Visible Satellite Imagery Spring 2015 ARSET - AQ Applied Remote Sensing Education and Training – Air Quality A project of NASA Applied Sciences Week –
UNH Coastal Observing Center NASA GEO-CAPE workshop August 19, 2008 Ocean Biological Properties Ru Morrison.
bb 555nm (1/m) (B1304) Combining High Resolution HICO and GOCI Imagery With Ocean Circulation Models: Towards a Fully-3D.
Remote Sensing Allie Marquardt Collow Met Analysis – December 3, 2012.
Sherwin Ladner 1, Robert Arnone 2, Ryan Vandermeulen 2, Paul Martinolich 3, Adam Lawson 1, Jennifer Bowers 3, Richard Crout 1, Michael Ondrusek 4,Giulietta.
In situ science in support of satellite ocean color objectives Jeremy Werdell NASA Goddard Space Flight Center Science Systems & Applications, Inc. 6 Jun.
Ocean Color Observations and Their Applications to Climate Studies Alex Gilerson, Soe Hlaing, Ioannis Ioannou, Sam Ahmed Optical Remote Sensing Laboratory,
Atmospheric Correction Algorithms for Remote Sensing of Open and Coastal Waters Zia Ahmad Ocean Biology Processing Group (OBPG) NASA- Goddard Space Flight.
VALIDATION OF SUOMI NPP/VIIRS OPERATIONAL AEROSOL PRODUCTS THROUGH MULTI-SENSOR INTERCOMPARISONS Huang, J. I. Laszlo, S. Kondragunta,
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Menghua Wang, NOAA/NESDIS/ORA Atmospheric Correction using the MODIS SWIR Bands (1240 and 2130 nm) Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp.
Retrieving Coastal Optical Properties from MERIS S. Ladner 1, P. Lyon 2, R. Arnone 2, R. Gould 2, T. Lawson 1, P. Martinolich 1 1) QinetiQ North America,
Established “Golden Regions Col Mont Thi. Multiple Satellites - MODIS, MERIS, VIIRS –Proxy Real time processing For ocean water quality products (including.
Monitoring Bio-Optical Processes Using NPP-VIIRS And MODIS-Aqua Ocean Color Products Robert Arnone (1), Sherwin Ladner (2), Giulietta Fargion (3), Paul.
Analysis of GOCI data in Preparation for GEO-CAPE Curtiss O. Davis 1 ZhongPing Lee 2 1 COAS, Oregon State University, Corvallis, OR USA
Remote Sensing & Satellite Research Group
Cal Val Telecon June 5, 2014 Stennis - Cal val Team Update on VIIRS Ocean Color Cal Val USM, NRL, QNA, SDSU 1.Tracking the Moby and WavCis 2. Sensitivity.
6.4 N2/N6E Project Review 06 Oct 2011 Project: Preparing Tactical Ocean Optical Products for Future Polar- Orbiting Sensors
Evaluation of VIIRS ocean color data using measurements from the AERONET-OC sites Samir Ahmed* a, Alex Gilerson a, Soe Hlaing a, Ioannis Ioannou a, Menghua.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
VIIRS CAL _ Val Ocean Color January 31, 2013 Stennis Update USM, NRL, SDSU.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Evaluation of GOCI, MODIS, and VIIRS Imagery Richard L. Crout, Sherwin Ladner, Ruhul Amin, and Adam Lawson Ocean Sciences Branch - Oceanography Division.
Status Updates VTR (v5.8 / 4.12) – SPAWAR Reviews v5.8 vs. v5.6 (plots Jen created Brandon style) Vicals (MODIS, VIIRS, GOCI) MOBY, WAVCIS (MODIS,
Optical Water Mass Classification for Interpretation of Coastal Carbon Flux Processes R.W. Gould, Jr. & R.A. Arnone Naval Research Laboratory, Code 7333,
NRL 7343 Nov’97 Remote Sensing in the Japan East Sea Robert ArnoneRichard Gould Chistine Chan Sherwin Ladner Naval Research Laboratory Stennis Space Center.
Menghua Wang, NOAA/NESDIS/ORA Refinement of MODIS Atmospheric Correction Algorithm Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp Springs, MD.
Assessing the Phenological Suitability of Global Landsat Data Sets for Forest Change Analysis The Global Land Cover Facility What does.
SNPP Ocean SIPS status SNPP Applications Workshop 18 November 2014 Bryan Franz and the Ocean Biology Processing Group.
Validation of Coastwatch Ocean Color products S. Ramachandran, R. Sinha ( SP Systems NOAA/NESDIS) Kent Hughes and C. W. Brown ( NOAA/NESDIS/ORA,
NRL 7333 Rb = 1-  1+  1+  2 Non- Linear b1- b2q3 influences We developed improved SeaWIFS coastal ocean color algorithms to derived inherent optical.
6.4 N2/N6E Project Review 08 November 2012 Project: Preparing Tactical Ocean Optical Products for Future Polar- Orbiting Sensors PI: Sherwin Ladner
Stennis NOAA Cal/Val Cruise Status on Data Processing NRL APS VIIRS Processing v5.8 : w/ NASA 2014 Reprocessing Updates Reprocessing Started for cruise.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Coastal Optical Characterization Experiment (COCE) Activities at STAR NOAA 2013 Satellite Conference, April 7-12, 2013 M. Ondrusek,
Optical Properties in coastal waters change rapidly on very fine spatial scales. The existence of multiple ocean color systems provides a unique capability.
Use of the Moon as a calibration reference for NPP VIIRS Frederick S. Patt, Robert E. Eplee, Robert A. Barnes, Gerhard Meister(*) and James J. Butler NASA.
MODIS Near-IR Water Vapor and Cirrus Reflectance Algorithms & Recent Updates for Collection 5 Bo-Cai Gao Remote Sensing Division, Code 7232, Naval Research.
International Ocean Color Science Meeting, Darmstadt, Germany, May 6-8, 2013 III. MODIS-Aqua normalized water leaving radiance nLw III.1. R2010 vs. R2012.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Applications of the NPOESS Imagers Thomas F. Lee, Jeffrey Hawkins, F. Joseph Turk, Peter Gaiser, Mike Bettenhausen Naval Research Laboratory Monterey CA.
R. Santer and B. Berthelot Final meeting, ESRIN, Frascati, April 21, 2009 Calibration Test Sites Selection and Characterisation WP260 – Error analysis:
VIIRS-derived Chlorophyll-a using the Ocean Color Index method SeungHyun Son 1,2 and Menghua Wang 1 1 NOAA/NESDIS/STAR, E/RA3, College Park, MD, USA 2.
Remote Sensing of the Ocean and Coastal Waters
D e v e l o p m e n t o f t h e M N I R-S W I R a n d AA a t m o s p h e r I c c o r r e c t I o n a n d s u s p e n d e d s e d I m e n t c.
Dimitry Van der Zande – RBINS Kevin Ruddick - RBINS
Extinction measurements
IMAGERY DERIVED CURRENTS FROM NPP Ocean Color Products 110 minutes!
Using Sun Glint and Antarctic Ice Sheets to Calibrate MODIS and AVHRR Observations of Reflected Sunlight William R. Tahnk and James A. Coakley, Jr Cooperative.
The Aqua-MODIS calibration transfer using DCC
Presentation transcript:

A.B. VIIRS (Nov. 20, 2013)

GEOCAPE / Northern Gulf of Mexico Cruise July 9-19, Scatter Insitu: UMASS/NOAA

A.B. C. D. 1:1 Line

VIIRS 1815 GMT Bb_551_qaa Rrs Stations – Handheld Radiometer Flowthru Stations – AC9 A B

MODIS & VIIRS Very Similar! VIIRS 1815 GMT Bb_551_qaa Flowthru Stations – AC9 19 Stations

A. MODIS (1855 GMT) AL MS LA FL B. SNPP VIIRS (1925 GMT) AL MS LA FL m -1

GEOCAPE / Northern Gulf of Mexico Cruise September 9-19, 2013 Rrs and IOP Station Locations Insitu: UMASS/NOAA VIIRS Mean (September 9-19, 2013)

GEOCAPE / Northern Gulf of Mexico Cruise July 9-19, Spectral Insitu: UMASS/NOAA

Insitu: UMASS (Lee) & NOAA (Ondrusek) 25 Valid Matchups

Insitu: UMASS (Lee) & NOAA (Ondrusek) A.B. C. D.

GEOCAPE / Northern Gulf of Mexico Cruise July 9-19, Scatter Insitu: UMASS/NOAA

GEOCAPE / Northern Gulf of Mexico Cruise July 9-19, Spectral

NOAA ECOPUC Data (Ondrusek)

RV Ocean Color Cruise – November 20, 2013 – Mississippi Sound Rrs and IOP (Surface FlowThru +/- 30 Minutes from Satellites) VIIRS 1815 GMT Bb_551_qaa Rrs Stations – Handheld Radiometer Flowthru Stations – AC9

VIIRS Comparison Between MODIS and VIIRS - November 20, 2013 Mississippi Sound QAA Total Backscattering (551nm for VIIRS & 547nm for MODIS Aqua) MODIS Aqua Biloxi, MS Bay St. Lous, MS Slidell, LA Biloxi, MS Bay St. Lous, MS Slidell, LA

A.B. C. D. 1:1 1:1 1:1

A.B. C. D.

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass) MODIS & VIIRS Very Similar! Satellite bb/b Insitu profile bb/b

19 Stations

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass)

R/V Ocean Color Cruise Mississippi Sound November 20, 2013 FlowThru (+/- 30 minutes of early/late satellite pass) MODIS & VIIRS Very Similar!

Evaluation of GOCI, MODIS, and VIIRS Imagery Objective Evaluate current NRL processing of GOCI level 1b water leaving radiance (nL w ) Provide an inter-sensor comparison between GOCI, MODIS, and VIIRS remote sensing reflectances Compare GOCI, MODIS, and VIIRS with East China Sea Aeronet Ocean Color (Gageocho and Ieodo) data 22Session 42 Optical Remote Sensing 2014 AGU OCEAN SCIENCES (Crout, et.al.)

Evaluation of GOCI, MODIS, and VIIRS Imagery Background - Data MODIS – Processed with MOBY gains VIIRS – Processed with MOBY gains GOCI – Processed with MODIS-SWIR-derived vicarious calibration gains – GOCI data from 4Z GTM (corresponds to local 1 pm) Reduces sun glint and sensor issues Aeronet SeaPrism – Gageocho Aeronet (SeaPrism #624) was moved to Ieodo Results in a data gap from May 2012 – December 2013 The quality control of the data is near real time? 23Session 42 Optical Remote Sensing

Evaluation of GOCI, MODIS, and VIIRS Imagery Background - Processing Operational Ocean Color Processing – NRL’s Automated Processing System (APS) based on n2gen software (NRL/NASA R&D) – Level 1b data obtained from NOAA CLASS (MODIS) and NAVO (GOCI and MODIS) – Atmospheric correction using Gordon-Wang NIR with 80 aerosol models – Glint and cloud removal 24Session 42 Optical Remote Sensing

Evaluation of GOCI, MODIS, and VIIRS Imagery JD Spectra – Gageocho and Ieodo Session 42 Optical Remote Sensing25 Ieodo Gageocho

Evaluation of GOCI, MODIS, and VIIRS Imagery JD Spectra – Gageocho Session 42 Optical Remote Sensing26

Evaluation of GOCI, MODIS, and VIIRS Imagery JD spectra – Ieodo Session 42 Optical Remote Sensing27

Evaluation of GOCI, MODIS, and VIIRS Imagery All sensors (4Z) time series - rrs 550 Session 42 Optical Remote Sensing28

Evaluation of GOCI, MODIS, and VIIRS Imagery - bb 551nm JD 277 Imagery Session 42 Optical Remote Sensing29 GOCI No GainsMODIS VIIRS Gains GOCI Gains VIIRS No Gains bad

Evaluation of GOCI, MODIS, and VIIRS Imagery JD 277 Full Image comparison to sites from multiple images - R 2 Values Session 42 Optical Remote Sensing30 R 2 ValuesMultiple Images, Single SampleSingle Image, all samples ChannelGOCI-MODISVIIRS-MODISGOCI-MODISVIIRS-MODIS Compared to MODIS, VIIRS doing a little better overall than GOCI (mainly 412). All three sensors consistent.

Evaluation of GOCI, MODIS, and VIIRS Imagery Conclusions MODIS, VIIRS, and GOCI remote sensing reflectances compare favorably in the East China Sea Application of Gains to GOCI and VIIRS visibly improves data Application of Gains lowers rrs in most cases – GOCI 412 and 443 channels appear to be exceptions Data from single points and imagery show similar statistics, except at GOCI 412 and 443 Channels Overall, the comparison between the sensors are good Session 42 Optical Remote Sensing31