Nearly everything we use is manufactured from chemicals. › Soaps, shampoos, conditioners, cd’s, cosmetics, medications, and clothes. For a manufacturer to make a profit the cost of making any of these items can’t be more than the money paid for them. Chemical processes carried out in industry must be economical, this is where balanced equations help.
Equations are a chemist’s recipe. ◦ They tell chemists what amounts of reactants to mix and what amounts of products to expect. When you know the quantity of one substance in a reaction, you can calculate the quantity of any other substance consumed or created in the rxn. ◦ Quantity meaning the amount of a substance in grams, liters, molecules, or moles.
YouTube - How an Airbag works YouTube - How an Airbag works
The calculation of quantities in chemical reactions is called stoichiometry.
Assume that the major components of the bike are the frame (F), the seat (S), the wheels (W), the handlebars (H), and the pedals (P). The finished bike has a “formula” of FSW 2 HP 2. The balanced equation for the production of 1 bike is. F +S+2W+H+2P FSW 2 HP 2
Now in a 5 day workweek, A company is scheduled to make 640 bikes. How many wheels should be in the plant on Monday morning to make these bikes? What do we know? ◦ Number of bikes = 640 bikes ◦ 1 FSW 2 HP 2 =2W (balanced eqn) What is unknown? ◦ # of wheels = ? wheels F +S+2W+H+2P FSW 2 HP 2
The connection between wheels and bikes is 2 wheels per bike. We can use this information as a conversion factor to do the calculation. 640 FSW 2 HP 2 1 FSW 2 HP 2 2 W = 1280 wheels We can make the same kinds of connections from a chemical rxn eqn. N 2 (g) + 3H 2 (g) 2NH 3 (g) The key is the “coefficient ratio”.
◦ The coefficients of the balanced chemical equation indicate the numbers of moles of reactants and products in a chemical rxn. 1 mole of N 2 reacts with 3 moles of H 2 to produce 2 moles of NH 3. ◦ N 2 and H 2 will always react to form ammonia in this 1:3:2 ratio of moles. So if you started with 10 moles of N 2 it would take 30 moles of H 2 and would produce 20 moles of NH 3 N 2 (g) + 3H 2 (g) 2NH 3 (g)
Using the coefficients, from the balanced equation to make connections between reactants and products, is the most important information that a rxn equation provides. › Using this information, you can calculate the amounts of the reactants involved and the amount of product you might expect. › Any calculation done with the next process is a theoretical number, the real world isn’t always perfect.
The following rxn shows the synthesis of aluminum oxide. 3O 2 (g) + 4Al(s) 2Al 2 O 3 (s) If you only had 1.8 mols of Al how much product could you make? Given: 1.8 moles of Al Uknown: ____ moles of Al 2 O 3 3O 2 (g) + 4Al(s) 2Al 2 O 3 (s)
Solve for the unknown: 1.8 mol Al 4 mol Al 2 mol Al 2 O 3 = 0.90mol Al 2 O 3 3O 2 (g) + 4Al(s) 2Al 2 O 3 (s) Mole Ratio
The following rxn shows the synthesis of aluminum oxide. 3O 2 (g) + 4Al(s) 2Al 2 O 3 (s) If you wanted to produce 24 mols of product how many mols of each reactant would you need? Given: 24 moles of Al 2 O 3 Uknown: ____ moles of Al ____ moles of O 2
Solve for the unknowns: 24 mol Al 2 O 3 2 mol Al 2 O 3 4 mol Al = 48 mol Al 3O 2 (g) + 4Al(s) 2Al 2 O 3 (s) 24 mol Al 2 O 3 2 mol Al 2 O 3 3 mol O 2 = 36 mol O 2
1. How many moles of potassium chlorate, KClO 3 are needed to produce 5 mol O 2 given the following BALANCED EQUATION? 2KClO 3 2 KCl + 3O 2
2. Sodium metal reacts with chlorine gas to produce sodium chloride. Write a balanced chemical equation. If 3.75 mol Na react with enough chlorine gas, how much sodium chloride is produced?
No lab balance measures moles directly, generally mass is the unit of choice. From the mass of 1 reactant or product, the mass of any other reactant or product in a given chemical equation can be calculated, provided you have a balanced rxn equation. As in mole-mole calcs, the unknown can be either a reactant or a product.
Acetylene gas (C 2 H 2 ) is produced by adding water to calcium carbide (CaC 2 ). How many grams of C 2 H 2 are produced by adding water to 5.00 g CaC 2 ? CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2
What do we know? ◦ Given mass = 5.0 g CaC 2 ◦ Mole ratio: 1 mol CaC 2 = 1 mol C 2 H 2 (from balanced equation) ◦ Molar Mass (MM) of CaC 2 = 64.0 g/mol CaC 2 ◦ Molar Mass of C 2 H 2 = 26.0g/mol C 2 H 2 What are we asked for? ◦ grams of C 2 H 2 produced CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2 mass A moles A moles B mass B
What mass of copper is required to react with 4.00g of silver nitrate ? Cu + 2AgNO 3 2Ag + Cu(NO 3 ) 2
How many grams of O 2 are produced when a sample of 29.2 g of H 2 O is decomposed by electrolysis according to this balanced equation: 2H 2 O 2H 2 + O 2
Aspirin can be made from a chemical rxn between the reactants salicylic acid and acetic anhydride. The products of the rxn are acetyl-salicylic acid (aspirin) and acetic acid (vinegar). Our factory makes 125, count bottles of Bayer Aspirin/day. Each bottle contains 100 tablets, and each tablet contains 325mg of aspirin. How much in kgs + 10% for production problems, of each reactant must we have in order to meet production? C 7 H 6 O 3 + C 4 H 6 O 3 C 9 H 8 O 4 + HC 2 H 3 O 2 Salicylic acid Acetic anhydride aspirinvinegar
What are we asked for? ◦ Mass of salicylic acid in kgs + 10% ◦ Mass of acetic anhydride in kgs + 10% What do we know? ◦ Make 125,000 aspirin bottles/day ◦ 100 aspirin/bottle ◦ 325 mg aspirin/tablet ◦ Mole ratio of aspirin to salicylic acid (1:1) and acetic anhydride (1:1) ◦ MM aspirin = g/mol ◦ MM C 7 H 6 O 3 = g/mol ◦ MM C 4 H 6 O 3 = g / mol C 7 H 6 O 3 + C 4 H 6 O 3 C 9 H 8 O 4 + HC 2 H 3 O 2
125,000 bottles 1 bottle 100 tablets 1 tablet 325mg asp mg 1 g How many grams of aspirin do I need to produce? C 7 H 6 O 3 + C 4 H 6 O 3 C 9 H 8 O 4 + HC 2 H 3 O 2
In a chemical reaction, an insufficient quantity of any of the reactants will limit the amount of product that forms. Limiting reactant (reagent): reactant that determines the amount of product that can be formed in the reaction. Excess reactant (reagent): reactant that is not completely used up in a reaction. Theoretical yield: The maximum quantity of product that a reaction could theoretically make (calculated based upon limiting reactant).
Calculate how much product ( Cu 2 S) each amount of reactant produces respectively.