Impurity effect on charge and spin density in α-Fe

Slides:



Advertisements
Similar presentations
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Advertisements

1 The Atom Atomic Number and Mass, Isotopes. 2 Elements Pure substances that cannot be separated into different substances by ordinary processes Are the.
Properties of Elements
investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
1 Pure Metals   increases linearly with increasing temperature  For T  0:   constant Theory Matthiessen's rule.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
CH. 2 atomic models electronic configuration oxidation numbers
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
CHAPTER 2: The Chemistry of Life BIO 121. Chemistry is relevant… (even if we don’t like it)
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
The Rare Earth Elements
Trends of the Periodic Table
Periodic Table Of Elements
Ions Wednesday January 8, 2014
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Modern Periodic Table Objective:
Trends in atomic size (radius) Definition of atomic radius: Covalent radius:  The covalent bond length in H 2 molecule is the distance between the two.
PPT - Forming Ionic Compounds
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Teacher Notes This PPT was revised June 10, This PPT is a review on the atomic characteristics of the four main essential elements hydrogen, carbon,
Magnetism of the regular and excess iron in Fe1+xTe
Composition of the Earth’s core from ab-initio calculation of chemical potentials Department of Earth Sciences & Department of Physics and Astronomy, Thomas.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
S2 SCIENCE CHEMICAL REACTIONS
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
Name: Dr. Pramod B. Thakur Class: S. Y. B
Chapter 6: Chemical Bonding
KS4 Chemistry Metallic Bonding.
Chemical Reactions and Balancing Equations (I)
THE TRANSITION METALS.
Electric quadrupole interaction in cubic BCC α-Fe
Chemistry Metals and non metals.
KS4 Chemistry The Periodic Table.
KS4 Chemistry Metallic Bonding.
Emission of Energy by Atoms and Electron Configurations
THE TRANSITION METALS.
Trends of the Periodic Table
Chemsheets AS006 (Electron arrangement)
AQA GCSE Atomic structure and periodic table part 2
Soil processes and trace metals
Periodic Table of the Elements
Chemsheets AS006 (Electron arrangement)
The Periodic Table and the Elements
Ⅱ HOMO-LUMO gap and dispersion of HOMO
The Periodic Table and the Elements
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
The Periodic Table and the Elements
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Edexcel Topic 1: Key concepts in chemistry
The Periodic Table Part I – Categories of Elements
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Physical Inorganic Chemistry : THE STRENGTH OF ACIDS & BASES
PPT - Forming Ionic Compounds
Introduction to Periodic Trends
The Periodic Table Part I – Categories of Elements
Presentation transcript:

Impurity effect on charge and spin density in α-Fe – comparison between cellular model, ab initio calculations and Mössbauer spectroscopy data A. Błachowski1, U.D. Wdowik2, K. Ruebenbauer1 1 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, Kraków, Poland 2 Applied Computer Science Division, Institute of Technology,

Impurities dissolved randomly on regular iron sites in BCC iron

magnetic hyperfine field B (electron spin density on Fe nucleus) and Impurities modify magnetic hyperfine field B (electron spin density on Fe nucleus) and isomer shift S (electron charge density  on Fe nucleus). Electron charge and spin densities on Fe nucleus are affected by volume effect caused by solution of impurity and by conduction band modification. Aim of this contribution is to separate VOLUME EFFECT and BAND EFFECT due to addition of impurity.

1) One can study variation dB/dc of average magnetic hyperfine field B on Fe nucleus versus particular impurity concentration c. Similar variation d/dc of average electron density  on Fe nucleus could be conveniently observed via isomer shift variation dS/dc , where S denotes a total shift versus total shift in pure -Fe.

Fe100-cPdc Fe100-cMoc

References [Be, Cu] I. Vincze and A. T. Aldred, Solid State Communications 17, 639 (1975). [Al] S. M. Dubiel and W. Zinn, Phys. Rev. B 26, 1574 (1982). [Si] S. M. Dubiel and W. Zinn, J. Magn. Magn. Mater. 28, 261 (1982). [P] S. M. Dubiel, Phys. Rev. B 48, 4148 (1993). [Ti] J. Cieślak and S. M. Dubiel, J. Alloys Comp. 350, 17 (2003). [V] S. M. Dubiel and W. Zinn, J. Magn. Magn. Mater. 37, 237 (1983). [Cr] S. M. Dubiel and J. Żukrowski, J. Magn. Magn. Mater. 23, 214 (1981). [Mn, Ni] I. Vincze and I. A. Campbell, J. Phys. F, Metal Phys. 3, 647 (1973). [Co] J. Chojcan, Hyperf. Interact. 156/157, 523 (2004). [Zn] A. Laggoun, A. Hauet, and J. Teillet, Hyperf. Interact. 54, 825 (1990). [Ga] A. Błachowski, K. Ruebenbauer, J. Żukrowski, and J. Przewoźnik, J. Alloys Compd. 455, 47 (2008). [Ge] S. M. Dubiel and W. Zinn, Phys. Rev. B 28, 67 (1983). [As, Sb] I. Vincze and A. T. Aldred, Phys. Rev. B 9, 3845 (1974). [Nb] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, Phys. Status Solidi B 242, 3201 (2005). [Mo] A. Błachowski, K. Ruebenbauer, J. Żukrowski, and J. Przewoźnik, J. Alloys Compd. 482, 23 (2009). [Ru] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, Phys. Rev. B 73, 104423 (2006). [Rh] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, J. Alloys Compd. 477, 4 (2009). [Pd] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, Phys. Scr. 70, 368 (2004). [Sn] S. M. Dubiel and W. Znamirowski, Hyperf. Interact. 9, 477 (1981). [W] S. M. Dubiel and W. Zinn, Phys. Rev. B 30, 3783 (1984). [Re] S.M. Dubiel, J. Magn. Magn. Mater. 69, 206 (1987). [Os] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, Nukleonika 49, S67 (2004). [Ir] A. Błachowski, K. Ruebenbauer, and J. Żukrowski, J. Alloys Compd. 464, 13 (2008). [Pt] S. M. Dubiel, Phys. Rev. B 37, 1429 (1988). [Au] A. Błachowski, K. Ruebenbauer, J. Przewoźnik, and J. Żukrowski, J. Alloys Compd. 458, 96 (2008).

BAND EFFECT + VOLUME EFFECT Correlation between electron spin density (dB/dc) and electron density (dS/dc) variations for various impurities BAND EFFECT + VOLUME EFFECT Isomer shift S could be transformed into electron density  on Fe nucleus Calibration constant

VOLUME EFFECT and BAND EFFECT introduced by impurity? ANSWER 2) QUESTION How to separate VOLUME EFFECT and BAND EFFECT introduced by impurity? ANSWER VOLUME EFFECT can be calculated for pure -Fe by using ab initio methods (Wien2k). In order to do so one has to calculate magnetic hyperfine field B and electron density  on Fe nucleus for pure -Fe varying lattice constant a.

Fe Variation of electron density -0 and hyperfine field (contact field) B-B0 versus lattice constant a-a0

3) QUESTION How impurities change lattice constant a? ANSWER X-ray diffraction data Lattice constant a versus impurity concentration c +0.0028 Å/at.% +0.0047 Å/at.% Fe100-cOsc Fe100-cAuc

da/dc for all impurities studied Ne - number of out of the core electrons donated by impurity

1) 2) 3) 1) + 2) + 3) Mössbauer data ab initio calculations - X-ray diffraction data 2) 3) 1) + 2) + 3) Volume correction for electron spin density (hyperfine field) and for electron charge density (isomer shift) Pure BAND MODIFICATION EFFECT i.e. volume effect due to impurity is removed.

Correlation between volume corrected (pure BAND EFFECT) electron spin density (dB/dc)b and electron density (dS/dc)b variations for various impurities All d metals fall on single straight line with positive slope. Hence, the band effect is almost the same regardless of principal quantum number of d shell of impurity.

for various impurities: Correlation between electron spin density and electron density variations for various impurities: (a) – total; (b) – volume corrected, i.e., pure band effect.

Cellular atomic model (CAM) of Miedema and van der Woude - isomer shift of the alloy containing diluted impurity a in the matrix b - electro-chemical potentials of the pure element a and b forming binary alloy - electron densities - CAM parameters [1] A. R. Miedema and F. van der Woude, Physica 100B, 145 (1980) [2] A. R. Miedema, Physica B 182, 1 (1992)

Cellular atomic model (CAM) of Miedema and van der Woude Correlation between experimental derivative of the average isomer shift versus impurity concentration c and corresponding derivative within CAM model

Cellular atomic model (CAM) of Miedema and van der Woude (b) Correlation between experiment and CAM for the first shell perturbations of isomer shift S1(E) and S1(M) (c) Correlation between ab initio calculated S1(C) and CAM S1(M)

Cellular atomic model (CAM) of Miedema and van der Woude B Dispersion mm/(s∙V∙at.%) x102 mm/(s∙at.%) x102 d<S>/dc 0.79 -2.11 0.20 mm/(sV) x102 mm/s x102 S1 exp 3.00 -11.18 2.60 S1 ab initio 4.86 -13.25 1.66

versus distance r from the impurity (co-ordination shell) Variation of the electron density  (isomer shift S) and hyperfine field B versus distance r from the impurity (co-ordination shell)

Mössbauer spectra for various concentrations of Ru and Os. Red lines - perturbations of the charge and spin density obtained from the ab initio calculations.