4.1 Graphs of Sine and Cosine OBJ: Graph sine and cosine
1 DEF: Sine Graph 1 0ππ3π 2π
1 DEF: Sine Graph 1 0ππ3π 2π
y = d + a (trig b ( x + c) ) a (amplitude) multiply a times (0 | ) b (period) 2π b c (starting point) d (vertical shift)
y = sin x Ref. no Amp. 1 Per. 2π ¼ Per. π/2 St. Pt. 0 Vert. Sh. none π/2 3π/2 4π/2
2 DEF: Cosine Graph 0ππ3π 2π
2 DEF: Cosine Graph - π 0ππ3π 2π
DEF: Periodic function A function f with the property f(x) = f(x+p) for every real number x in the domain of f and for some real positive number p. The smallest possible positive value of p is the period of the function f.
3 EX: Graph y = 2 sin x 0ππ3π 2π ( )
3 EX: Graph y = 2 sin x 0ππ3π 2π
DEF: Amplitude of Sine and Cosine The graph of y = a sin x or y = a cos x will have the same shape as y = sin x or y cos x, respectively, except with range - a y a . The number a is called the amplitude.
y = d + a(trig b ( x + c) ) a (amplitude) multiply a times (0 | ) b (period) 2π b c (starting point) d (vertical shift)
4 y = -2 cos x ( ) π/2 3π/2 4π/2 -2
4 y = -2 cos x Ref. yes Amp. - 2 Per. 2π ¼ Per. π/2 St. Pt. 0 Vert. Sh. none ( ) π/2 3π/2 4π/2 -2
4 y = -2 cos x π/2 3π/2 4π/2 -2
DEF: Vertical Translation A function of the form y =d + a sin b x or of the form y = d + a cos b x is shifted vertically when compared with y = a sin b x or y =a cos b x.
y = d + a(trig b ( x + c) ) a (amplitude) multiply a times (0 | ) b (period) 2π b c (starting point) d (vertical shift)
5 EX: Graph y = – sin x 0ππ3π 2π 2
1 DEF: Sine Graph 1 0ππ3π 2π
3 EX: Graph y = 2 sin x 0ππ3π 2π 2 2( )
5 EX: Graph y = – sin x 1 0ππ3π 2π ( )
5 EX: Graph y = – sin x 1 0ππ3π 2π ( )
5 EX: Graph y = – sin x 1 0ππ3π 2π
DEF: Phase Shift The function y = sin (x + c) has the shape of the basic sine graph y = sin x, but with a translation c units: to the right if c < 0 and to the left if c > 0. The number c is the phase shift of the graph. The cosine graph has the same function traits.
y = d + a(trig b (x + c) a (amplitude) multiply a times (0 | ) b (period) 2π b c (starting point) d (vertical shift)
EX: Graph y = sin (x – π/3) 6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14 (
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14
6 EX: Graph y = 4 – sin (x – π/3) 2 5 8 11 14
EX: Graph y = 3cos (x + π/4) 7 EX: Graph y =-3 + 3cos(x+π/4)
- 3 5 7
EX: Graph y = 3cos (x + π/4) 7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 ( )
7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 __ __ __ __ __ __ __ __ __
7 EX: Graph y =-3 + 3cos(x+π/4) - 3 5 7 __ __ __ __ __ __ __ __ __
1 EX: Graph y = -2 +sin x Ref, Amp No, 1 Per 2 π ¼ Per 0ππ3π 2π π/2 2 2 St.Pt. 0 Vert. Shift 2
1 EX: Graph y = -2 +sin x 0ππ3π 2π
1 EX: Graph y = -2 +sin x 0ππ3π 2π
2 EX: Graph y = 3 – 2 cos x Ref, Amp Yes, -2 Per 2 π ¼ Per 0ππ3π 2π π/2 2 2 St.Pt. 0 Vert. Shift 3
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π ( )
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π -2( )
2 EX: Graph y = 3 – 2 cos x 0ππ3π 2π -2( )