Cellular Respiration Harvesting Chemical Energy. Review: Oxidation and Reduction Oxidized atom Electron is donated Energy is donated Reduced atom Electron.

Slides:



Advertisements
Similar presentations
Chapter 9: Cellular Respiration
Advertisements

Cellular Respiration 7.1 Glycolysis and Fermentation 7.2 Aerobic Respiration.
CELL RESPIRATION.
Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration.
Harvesting Chemical Energy: Cellular Respiration Chapter 8.
Section 1 Glycolysis and Fermentation
Respiration The Four Stages.
ADP, ATP and Cellular Respiration
Cellular Respiration Chapter 9.
Cellular Respiration 7.3 Aerobic Respiration.
CELLULAR RESPIRATION BIOLOGY IB/ SL Option C.3.
Cellular Respiration.
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy
Cellular Respiration Breakdown of glucose to carbon dioxide and water.
AP Biology Cellular Respiration- Breaking the bonds of sugar to produce ATP ATP.
Cellular Respiration 3.7 & 8.1. Redox = oxidation/reduction reaction  Oxidation- loss of electrons - oxidized when it loses one or more e -  Reduction.
The Krebs Cycle Biology 11 Advanced
Cellular respiration: Harvesting chemical energy.
How Cells Harvest Energy Chapter 6
Cellular Respiration How Cells Harvest Chemical Energy – Cellular Respiration.
Cellular Respiration Chapter 7 Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration.
ADP, ATP and Cellular Respiration
Cellular Respiration.
Chapter 9~ Cellular Respiration: Harvesting Chemical Energy
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Biology – Campbell Reece.
Cellular Respiration: Harvesting Chemical Energy
Lecture #4Date _________ Chapter 9~ Cellular Respiration: Harvesting Chemical Energy.
CELLULAR RESPIRATION and FERMENTATION. Energy Harvest Fermentation – partial breakdown w/o oxygen Cellular Respiration – most efficient, oxygen consumed,
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Pp 69 – 73 & Define cell respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP Glucose.
How Cells Harvest Chemical Energy
Why cellular respiration?
CELLULAR RESPIRATION How Cells Harvest Chemical Energy.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration There are 69 slides in this presentation.
Cellular Respiration Overview Lecture 1
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration AP Biology. The Equation C 6 H 12 O 6 + 6O 2  6CO 2 + 6H ATP C 6 H 12 O 6 = glucose 6O 2 = oxygen gas 6CO 2 = carbon dioxide.
Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
Cellular Respiration An Overview. Principles of Energy Harvest Catabolic pathway √ Fermentation √Cellular Respiration C 6 H 12 O 6 + 6O2 ---> 6CO 2 +
Copyright © 2009 Pearson Education, Inc. Lectures by Gregory Ahearn University of North Florida Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration.
Lecture #4Date _________ Chapter 9~ A Musical Journey Through Cellular Respiration Objective: How do organisms produce energy for themselves to do work?
ADP, ATP and Cellular Respiration. What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing high- energy Phosphate bonds.
Ch. 6: Cellular Respiration Harvesting Chemical Energy.
ADP, ATP and Cellular Respiration Copyright Cmassengale.
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Glycolysis and Cellular Respiration
Cellular Respiration & Fermentation
ADP, ATP and Cellular Respiration
How Cells Harvest Chemical Energy
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Cellular Respiration.
Respiration! Chapter 9~ Cellular Respiration: Harvesting Chemical Energy Great Animation (show at end too)
Cellular Respiration Harvesting Chemical Energy
There are 69 slides in this presentation.
Cellular Respiration.
Breakdown of glucose to carbon dioxide and water
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Cellular Respiration.
Chapter 07 Cellular Respiration
Cellular Respiration Releases Energy from Organic Compounds
Cellular Respiration Chapter 9
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
How Cells Harvest Chemical Energy – Cellular Respiration
Harvesting Chemical Energy
Presentation transcript:

Cellular Respiration Harvesting Chemical Energy

Review: Oxidation and Reduction Oxidized atom Electron is donated Energy is donated Reduced atom Electron is received Energy is received InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Review: Oxidation and Reduction Reduced atom Electron is received Energy is received This atom served as an energy carrier. It picked up an electron from the atom on the left and gave it to the one on the right. InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Oxidized atom Electron is donated Energy is donated

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 4 Why cellular respiration?  Cells carry out the reactions of cellular respiration in order to produce ATP. ATP is used by the cells for energy.  All organisms need energy, therefore all organisms carry out cellular respiration.  The energy needed to produce ATP comes from glucose.  The equation for cellular respiration is: C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + 36 ATP (it is the reverse of the equation for photosynthesis.)

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 5  C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + 36 ATP Cellular Respiration During cellular respiration, the electrons (hydrogen atoms) in glucose will be removed in a number of steps. Will be reduced Will be oxidized  Oxidation-reduction  Oxidation is e- loss;  Reduction is e- gain  Reducing agent:e - donor  Oxidizing agent:: e - acceptor

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 6 Will be reduced Will be oxidized  C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + 36 ATP Cellular Respiration The electrons (hydrogen atoms) in glucose will be passed to oxygen to form water.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 7 Will be reduced Will be oxidized  C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + 36 ATP Cellular Respiration During this process, ATP will be produced. The electrons (hydrogen atoms) in glucose will be passed to oxygen to form water.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 8 C 6 etc.  In the slides that follow, the designations listed below will be used. »C 6 = a molecule that contains six-carbon atoms (example: Glucose) »C 5 = a five-carbon molecule »C 4 = a four-carbon molecule »C 3 = a three-carbon molecule »C 2 = a two-carbon molecule »C 1 = a one-carbon molecule (example: CO 2 )  Each of these (C 6, C 5, etc.) also have hydrogen and oxygen atoms but these will be ignored.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 9 Overview of Cellular Respiration (Next Slide)

Glycolysis The first step is called glycolysis. It occurs in the cytosol. During glycolysis, a glucose molecule (6 carbons) is converted to two pyruvate molecules (3 carbons each). It does not require oxygen (it is anaerobic). A total of 2 ATP are gained as a result of these reactions. Details of these reactions will be discussed later. InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation glycolysis Glucose 2 Pyruvate 2 ATP

Aerobic Respiration InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Aerobic respiration occurs in the mitochondrion. It requires oxygen (it is aerobic). It produces an additional 34 ATP. Glucose 2 Pyruvate Oxygen Aerobic respiration 2 ATP 34 more ATP

Fermentation Glucose 2 Pyruvate No oxygen Oxygen Aerobic respiration Alcohol + CO 2 (yeast, plants) Lactate (animals) Fermentation 2 ATP 34 more ATP 0 ATP InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Fermentation occurs if there is no oxygen present. It does not produce additional ATP.

Fermentation Glucose 2 Pyruvate No oxygen Oxygen Aerobic respiration Alcohol + CO 2 (yeast, plants) Lactate (animals) Fermentation 2 ATP 34 more ATP 0 ATP InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation The waste products of fermentation are alcohol or lactate. Campbell Animation

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 14 Glycolysis - Details glucose (C 6 ) 2C 3 Glycolysis consists of a number of different reactions that produce 2 pyruvate molecules from one glucose molecule. 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 15 Glycolysis - Details Several different 3-carbon compounds are produced during the reactions. The designation “C 3 ” is used here to represent all of them. Be aware that in addition to carbon, these compounds also contain oxygen and hydrogen. glucose (C 6 ) 2C 3 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 16 Glycolysis glucose (C 6 ) 2C 3 2 ATP 2 ADP Two ATP are consumed during glycolysis. P-C 6 -P This results in a 6-carbon compound that has 2 phosphate groups. 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 17 Glycolysis glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P The 6-carbon compound is split into two 3-carbon compounds. Each of these 3-carbon compounds has one phosphate group. 2 C 3 -P 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 18 Glycolysis Click here to review NAD + NAD + picks up two electrons to become NADH. 2 NAD + 2 NADH glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P 2 C 3 -P 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 19 Glycolysis The goal of cellular respiration is to produce ATP. NADH contains energy that can be used to produce ATP. This will be discussed later. 2 NAD + 2 NADH glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P 2 C 3 -P 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 20 Glycolysis Additional phosphorylation also occurs, producing 3-carbon compounds that have 2 phosphate groups each. 2 NAD + 2 NADH glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P 2 C 3 -P 2 P-C 3 -P 2 pyruvate (C 3 )

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 21 Glycolysis Click here to review substrate-level phosphorylation 2 ADP 2 ATP 2 pyruvate (C 3 ) 2 ADP 2 ATP Four ATP are produced by substrate-level phosphorylation. 2 NAD + 2 NADH glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P 2 C 3 -P 2 P-C 3 -P

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 22 Glycolysis 2 ATP are consumed and 4 are produced. The net result is 2 ATP produced in glycolysis 2 ADP 2 ATP 2 pyruvate (C 3 ) 2 ADP 2 ATP 2 NAD + 2 NADH glucose (C 6 ) 2 ATP 2 ADP P-C 6 -P 2 C 3 -P 2 P-C 3 -P

Summary of Glycolysis 2 NAD + 2 NADH 2 ADP 2 ATP 4 ATP produced - 2 ATP consumed 2 ATP net 2 NADH are also produced InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation glucose (C 6 ) 2C 3 2 ADP 2 ATP 2 ADP 2 pyruvate (C 3 ) Campbell Animation

Summary - Glycolysis InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation This diagram summarizes glycolysis. As the discussion of cellular respiration proceeds, we will add to this diagram. Glycolysis glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 25 Step 2: The Formation of Acetyl CoA (Next Slide)

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 26 Formation of Acetyl CoA During this step, the pyruvate that was produced by glycolysis is converted to acetyl CoA by the removal of CO 2. Pyruvate is a C 3, acetyl CoA is a C 2. (C 3 H 3 O 3 )(C 2 H 3 O – S – CoA) 2 pyruvate (C 3 ) 2 acetyl CoA (C 2 ) Coenzyme A 2 CO 2

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 27 Formation of Acetyl CoA Two NAD + molecules pick up two electrons each to become NADH. 2 NAD + 2 NADH 2 pyruvate (C 3 ) 2 acetyl CoA (C 2 ) Coenzyme A 2 CO 2

Summary – Glycolysis, Acetyl CoA InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation This diagram summarizes glycolysis and the formation of acetyl CoA. Glycolysis Formation of Acetyl CoA 2 acetyl groups (C 2 ) 2 NAD + 2 NADH 2 CO 2 glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 29 Two Acetyl CoA Molecules  Each glucose molecule that initially began cellular respiration produce two acetyl CoA molecules (previous slide). The two acetyl CoA molecules will now enter the Krebs cycle.  The next several slides show the reactions that occur to one molecule of Acetyl CoA. Remember that the reactions must be repeated two times because there are two molecules of acetyl CoA for each glucose molecule that began cellular respiration.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 30 Krebs Cycle (Next Slide)

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 31 Cyclic Metabolic Pathways  The Krebs Cycle is a cyclic pathway. Click here to review cyclic pathways

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 32 Krebs Cycle The acetyl portion of acetyl CoA becomes bonded to a C 4 molecule to produce a C 6 molecule. (C 6 H 5 O 7 ) Coenzyme A C4C4 C6C6 C 2 (acetyl CoA) The above diagram is represented by the equation below: Acetyl CoA + C 4  C 6 + Coenzyme A

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 33 Krebs Cycle A CO 2 is removed from the C 6 molecule to produce a C 5 molecule. C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH CO 2

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 34 Krebs Cycle C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH CO 2 F CO 2 has only one carbon (C 1 ). The oxygen in CO 2 came from the C 6 molecule.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 35 Krebs Cycle NADH is also produced from NAD +. C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH CO 2

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 36 C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH ATP FADH 2 NADH CO 2 Krebs Cycle Another CO 2 is then released. Two more NADH, one FADH 2, and one ATP are produced.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 37 Krebs Cycle The ATP is produced by substrate-level phosphorylation. C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH ATP FADH 2 NADH CO 2

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 38 Summary of the Krebs Cycle Acetyl CoA enters the Krebs cycle. The two carbon atoms are released in the form of CO 2. C4C4 C6C6 C2C2 C5C5 NADH ATP FADH 2 NADH CO 2

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 39 Summary of the Krebs Cycle Three NADH, one FADH2 and one ATP are produced for each acetyl group. C4C4 C6C6 C 2 (acetyl CoA) C5C5 NADH ATP FADH 2 NADH CO 2 McGraw-Hill WebLink

Summary – Glycolysis, Acetyl CoA, Kreb’s Cycle InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Krebs Cycle 2 C 4 2 C 6 2 C 2 (acetyl CoA) 2 C 5 2 NADH 2 ATP 2 FADH 2 2 NADH 2 CO 2 Glycolysis Formation of Acetyl CoA 2 acetyl groups (C 2 ) 2 NAD + 2 NADH 2 CO 2 glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3 Campbell Animation

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 41 Electron Transport System  NADH and FADH 2 produced during these reactions can be used to produce ATP.  The production of ATP using NADH and FADH 2 involves the electron transport system, a system of proteins located on the inner membrane of the mitochondria.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 42 Mitochondrion Structure Cristae Matrix Intermembrane Space  This drawing shows a mitochondrion cut lengthwise to reveal its internal components.

Mitochondrion - 1 inside outside intermembrane space These red dots represent proteins in the electron transport system InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion - 2 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ NADH NADH and FADH 2 from cellular respiration bring electrons to the electron transport system. e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion - 3 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ When a carrier is reduced, some of the energy that is gained as a result of that reduction is used to pump hydrogen ions across the membrane into the intermembrane space. e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion - 4 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ The electron is then passed to another carrier. e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion - 5 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ As before, some of the energy gained by the next carrier as a result of reduction is used to pump hydrogen ions into the intermembrane space. e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -6 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -7 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -8 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ Eventually, a concentration gradient of hydrogen ions is established in the intermembrane space (green on the diagram). e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -9 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ The last carrier must get rid of the electron. It passes it to oxygen to form water (next slide). e-e- InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -10 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ 2H + + 2e - + 1/2 O 2 ® H 2 O Note that e - + H +  H Two electrons are required to form one molecule of water. The process therefore happens twice for each water molecule. InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Mitochondrion -11 H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ ATP synthase produces ATP by phosphorylating ADP. The energy comes from hydrogen ions forcing their way into the matrix as they pass through the ATP synthase (due to osmotic pressure). ATP ADP + P i H+ InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

Summary of Oxidative Phosphorylation H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ NADH H+H+ H+H+ H+H+ 2H + + 2e - + 1/2 O 2  H 2 O ADP + P i H+ ATP InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Chemiosmosis: Any coupling of an exergonic flow of electrons down a concentration gradient to drive cellular work Awesome Weblink

Summary – Glycolysis, Acetyl CoA, Kreb’s Cycle, Electron Transport InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation electron transport 32 ATP 1/2 O 2 H2OH2O 10 NAD + 2 FAD Krebs Cycle 2 C 4 2 C 6 2 C 2 (acetyl CoA) 2 C 5 2 NADH 2 ATP 2 FADH 2 2 NADH 2 CO 2 Glycolysis Formation of Acetyl CoA 2 acetyl groups (C 2 ) 2 NAD + 2 NADH 2 CO 2 glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3 Campbell Animation

Summary of Cellular Respiration InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation CCCCCCCCCCCC CCCCCCCCCCCC glucose Glycolysis 2 pyruvate 2 ATP 2 NADH

Summary InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation CCCCCCCCCCCC CCCCCCCCCCCC glucose Glycolysis 2 pyruvate 2 ATP 2 NADH CO 2 C CO 2 Acetyl CoA 2 acetyl CoA 2CO 2 2NADH

CCCCCCCCCCCC CCCCCCCCCCCC glucose Glycolysis 2 pyruvate 2 ATP 2 NADH CO 2 C CO 2 Acetyl CoA 2 acetyl CoA 2CO 2 2NADH CO 2 Krebs Cycle 4 CO 2 2 ATP 6 NADH 2 FADH 2 Summary InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 59 ATP Yield per Glucose PathwaySubstrate-Level Phosphorylation Oxidative Phosphorylation Total ATP Glycolysis22 NADH (= 4 ATP)6 Glycolysis occurs in the cytoplasm of the cell. NADH produced in the cytoplasm must be brought into the mitochondrion before ATP is produced. Each NADH produced in glycolysis results in 2 ATP.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 60 ATP Yield per Glucose PathwaySubstrate-Level Phosphorylation Oxidative Phosphorylation Total ATP Glycolysis22 NADH (= 4 ATP)6 Formation of Acetyl CoA 02 NADH (= 6 ATP)6 Acetyl CoA is formed in the mitochondrion. Because the NADH produced is already in the mitochondrion, each NADH results in the production of 3 ATP. These NADH result in the production of 2 ATP each because they are produced outside the mitochondrion and must be transported in.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 61 ATP Yield per Glucose PathwaySubstrate-Level Phosphorylation Oxidative Phosphorylation Total ATP Glycolysis22 NADH (= 4 ATP)6 Formation of Acetyl CoA 02 NADH (= 6 ATP)6 Krebs Cycle26 NADH (= 18 ATP) 2 FADH 2 (= 4 ATP) 24

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 62 ATP Yield per Glucose PathwaySubstrate-Level Phosphorylation Oxidative Phosphorylation Total ATP Glycolysis22 NADH (= 4 ATP)6 Formation of Acetyl CoA 02 NADH (= 6 ATP)6 Krebs Cycle26 NADH (= 18 ATP) 2 FADH 2 (= 4 ATP) 24 Total43236

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 63 Fermentation (Next Slide)

Fermentation Fermentation does not involve the formation of acetyl CoA, the Krebs Cycle, or oxidative phosphorylation. InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation electron transport 32 ATP 1/2 O 2 H2OH2O 10 NAD + 2 FAD Krebs Cycle 2 C 4 2 C 6 2 C 2 (acetyl CoA) 2 C 5 2 NADH 2 ATP 2 FADH 2 2 NADH 2 CO 2 Glycolysis Formation of Acetyl CoA 2 acetyl groups (C 2 ) 2 NAD + 2 NADH 2 CO 2 glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3

Fermentation InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation Fermentation includes glycolysis plus several additional steps. Glycolysis glucose (C 6 ) 2 pyruvate (C 3 ) 2 ATP 2 NAD + 2 NADH 2 ADP 2 ATP 2 C 3

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 66 Fermentation Glycolysis requires a supply of NAD +. NADH must reduce (donate its electrons) to another molecule in order to regenerate NAD +. Otherwise, all of the NAD + will be used up as it is converted to NADH and glycolysis will stop. 2 ADP 2 ATP 2 NAD + 2 NADH

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 67 Fermentation glucose pyruvate lactate or alcohol (animals, bacteria) (plants, fungi) 2 ADP 2 ATP 2 NAD + 2 NADH NADH gives its electron to pyruvate, which is reduced to form either lactate or alcohol.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 68 The End Press “Esc” to exit full-screen mode.

Substrate-Level Phosphorylation Enzyme High-energy moleculeADP Phosphate groups Continued on next slide

Substrate-Level Phosphorylation Continued on next slide

Substrate-Level Phosphorylation Low-energy moleculeATP Return

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 72 Click Here to Return Return

NAD + (Nicotinamide Adenine Dinucleotide) Organic Molecule + NAD + NAD + + 2H  NADH + H +  NAD + functions in cellular respiration by carrying two electrons. With two electrons, it becomes NADH.  NAD + oxidizes its substrate by removing two hydrogen atoms. One of the hydrogen atoms bonds to the NAD +. The electron from the other hydrogen atom remains with the NADH molecule but the proton (H + ) is released.  NAD + + 2H  NADH + H +  NADH then donate the two electrons (one of them is a hydrogen atom) to another molecule. Continued on next slide + Organic Molecule +

Review: NAD + + 2H  NADH + H + NADH + H + NAD + Energy + 2H Energy + 2H Return NAD + is an electron carrier.

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 75 Click Here to Return Return

Review: A Cyclic Metabolic Pathway B C D F A E A + F  B B  C  D D  F + E Return

InstructionsInstructions | Review | # Carbons | Overview | Glycolysis | Acetyl CoA | Krebs Cycle | Electron transport | Summary | FermentationReview# CarbonsOverviewGlycolysisAcetyl CoAKrebs CycleElectron transportSummaryFermentation 77 Return Click here to return