Graphs - according to the mathematicians An undirected graph is 2-tuple: G=(V,E) a set of vertices a set of edges Vertices = {A, B, C, D, E} Edges = { {A,B}, {A,C}, {A,D}, {B,D} } Vertices = Edges = Can a graph...contain an edge from A to A?...contain two edge from A to B?
Graphs - more definitions An edge is a pair (v,w), where v, w V Path: is a walk in which all vertices are unique A walk is an alternating sequence of vertices and edges (starting and ending with vertices) in which each edge is incident to the vertices that precede and follow it in the sequence. e1e1 e2e2 e3e3 e4e4
Graphs - still more definitions e1e1 e2e2 e3e3 e4e4 Directed Graph (digraphs) Undirected Graph An undirected graph is connected if there is a path from every vertex to every other vertex
Labeled Graphs
Designing Graphs An undirected graph is 2-tuple: a set of vertices a set of edges Graph constructor» + Graph() «query» + boolean containsVertex( VertexKey v ) + boolean containsEdge(VertexKey v1, VertexKey v2 ) «update» + void insertVertex( VertexKey v ) + void insertEdge( VertexKey v1, VertexKey v2 ) + void removeVertex( VertexKey v ) + void removeEdge( VertexKey v1, VertexKey v2 ) Graph constructor» + Graph() «query» + boolean containsVertex( VertexKey v ) + boolean containsEdge(VertexKey v1, VertexKey v2 ) «update» + void insertVertex( VertexKey v ) + void insertEdge( VertexKey v1, VertexKey v2 ) + void removeVertex( VertexKey v ) + void removeEdge( VertexKey v1, VertexKey v2 )
Graph ADT Graph ADT Specifications Domain A Graph consists of two parts VERTICES -- a set of VertexKey EDGES -- a set of Invariant (ForAll EDGES : v1 VERTICES and v2 VERTICES and v1 ≠ v2 ) and (ForAll EDGES and EDGES and ≠ : (v1 = v4) (v2 ≠ v3) no loops no reversed edges
Graph ADT Methods Graph ADT Specifications(continued) Constructor Methods public Graph() post: VERTICES == {} and EDGES == {} Query Methods public boolean containsVertex(VertexKey v) post: result == ( v VERTICES ) public boolean containsEdge(VertexKey v1, VertexKey v2) post: result == (ThereIs ed EDGES : ed == or ed == )
Graph ADT Methods Graph ADT Specifications(continued) Update Methods public void insertVertex(VertexKey v) post: VERTICES == { v } public void insertEdge(VertexKey v1, VertexKey v2) pre: v1 VERTICES and v2 VERTICES and not containsEdge(v1,v2) post: EDGES = { } public void removeVertex(VertexKey v) post: VERTICES == { v } and EDGES = - { e | e and ( e = or e = for some vertex v s ) public void removeEdge(VertexKey v1, VertexKey v2) post: EDGES == - {, } What is different about a digraph ADT?
Digraph ADT Digraph ADT Specifications Domain A Digraph consists of two parts VERTICES -- a set of VertexKey ARCS -- a set of Invariant ( ForAll ARCS : fromV VERTICES and toV VERTICES )
Digraph ADT Methods Digraph ADT Specifications(continued) Constructor Methods public Digraph() post: VERTICES == {} and ARCS == {} Query Methods public boolean containsVertex(VertexKey v) post: result == ( v VERTICES ) public boolean containsArc(VertexKey fromV, VertexKey toV) post: result == (ThereIs arc ARCS : arc == )
Digraph ADT Methods Digraph ADT Specifications(continued) Update Methods public void insertVertex(VertexKey v) post: VERTICES == { v } public void insertArc(VertexKey fromV, VertexKey toV) pre: v1 VERTICES and v2 VERTICES post: ARCS = { } public void removeVertex(VertexKey v) pre: ForAll a == ARCS : ( fromV v and toV v ) post: VERTICES == { v } public void removeArc(VertexKey fromV, VertexKey toV) post: ARCS == - { }
Digraph Implementations Digraph ADT Specifications Domain A Digraph consists of two parts VERTICES -- a set of VertexKey ARCS -- a set of Invariant ( ForAll ARCS : fromV VERTICES and toV VERTICES ) Implementation?
Using Integers as “Keys” Digraph constructor» + Digraph() «query» + boolean containsVertex( VertexKey v ) + boolean containsArc(VertexKey fromV, VertexKey toV) «update» + void insertVertex( VertexKey v ) + void insertArc( VertexKey fromV, VertexKey toV ) + void removeVertex( VertexKey v ) + void removeArc( VertexKey fromV, VertexKey toV ) Digraph constructor» + Digraph() «query» + boolean containsVertex( VertexKey v ) + boolean containsArc(VertexKey fromV, VertexKey toV) «update» + void insertVertex( VertexKey v ) + void insertArc( VertexKey fromV, VertexKey toV ) + void removeVertex( VertexKey v ) + void removeArc( VertexKey fromV, VertexKey toV ) Digraph constructor» + Digraph() «query» + boolean containsVertex( int v ) + boolean containsArc( int fromV, int toV ) «update» + void insertVertex( int v ) + void insertArc( int fromV, VertexKey toV ) + void removeVertex( int v ) + void removeArc( int fromV, int toV ) Digraph constructor» + Digraph() «query» + boolean containsVertex( int v ) + boolean containsArc( int fromV, int toV ) «update» + void insertVertex( int v ) + void insertArc( int fromV, VertexKey toV ) + void removeVertex( int v ) + void removeArc( int fromV, int toV )
Using Integers as “Keys” Question: How would you implement such numbering? Answer: Why does this eliminate the need to store vertices?
Graph Breadth-first search Depth-first search Topological ordering: an ordering of vertices in a directed acyclic graph A D E B C
Adjacency Lists Consider storing outgoing arcs “in” their vertices. Performance? [0] [1] [2] [3] [4] [5] [6]...insertArc...containsArc...removeVertex
Path Finder Methods Digraph constructor» + Digraph() «query» + boolean containsVertex( int v ) + boolean containsArc( int fromV, int toV ) + boolean pathExists( int fromV, int toV ) + int distance( int fromV, int toV ) «update» + void insertVertex( int v ) + void insertArc( int fromV, VertexKey toV ) + void removeVertex( int v ) + void removeArc( int fromV, int toV ) Digraph constructor» + Digraph() «query» + boolean containsVertex( int v ) + boolean containsArc( int fromV, int toV ) + boolean pathExists( int fromV, int toV ) + int distance( int fromV, int toV ) «update» + void insertVertex( int v ) + void insertArc( int fromV, VertexKey toV ) + void removeVertex( int v ) + void removeArc( int fromV, int toV )
pathExists public boolean pathExists(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return true; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for (int v=0; v<=vertexCount; v++) if ( containsArc(reachedVertex, v) ) if (v == toV) return true; else reachedQ.addLast( v ); } return false; } public boolean pathExists(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return true; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for (int v=0; v<=vertexCount; v++) if ( containsArc(reachedVertex, v) ) if (v == toV) return true; else reachedQ.addLast( v ); } return false; } How could performance be improved for an adjacency list representation? This is an example of a Depth-first algorithm
pathExists (for adjacency lists) public boolean pathExists(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return true; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) if (v == toV) return true; else reachedQ.addLast( v ); } return false; } public boolean pathExists(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return true; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) if (v == toV) return true; else reachedQ.addLast( v ); } return false; }
distance public int distance(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return 0; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) if (v == toV) return step; else reachedQ.addLast( v ); } return -1; } public int distance(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; if (fromV == toV) // path of length zero return 0; else { reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) if (v == toV) return step; else reachedQ.addLast( v ); } return -1; } How does the method change for distance( int fromV, int toV )
distance - for a weighted digraph A common variant of distance is called shortest path. This algorithm begins with a labeled digraph in which arcs are labeled with numeric weights. Our first algorithm, known as Dijkstra’s Algorithm, assumes that all arc weights are positive. Modifications to prior algorithm: 1) must check all possible paths. 2) must compare each total path weight to shortest thus far. 3) must store total path weight along with each queued vertex.
Shortest Path public double shortestWeightedPath(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; int shortestPathSoFar = maxPossiblePath+1; if (fromV == toV) // path of length zero shortestPathSoFar = getArcWeight(fromV, toV); reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); reachedQ.addLast(getArcWeight(fromV, toV)); // if there is no Arc, weight: 0 for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); int pathLen = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) { lastQ.addLast( v ); lastQ.addLast( pathLen + getArcWeight(reachedVertex,v) ); if ( v == toV && && pathLen+getArcWeight(reachedVertex,v) < shortestPathSoFar ) shortestPathSoFar = pathLen+getArcWeight(reachedVertex,v); } return shortestPathSoFar; } public double shortestWeightedPath(int fromV, int toV) { java.util.LinkedList reachedQ, lastQ; int shortestPathSoFar = maxPossiblePath+1; if (fromV == toV) // path of length zero shortestPathSoFar = getArcWeight(fromV, toV); reachedQ = new java.util.LinkedList (); reachedQ.addLast( fromV ); reachedQ.addLast(getArcWeight(fromV, toV)); // if there is no Arc, weight: 0 for (int step=1; step<=vertexCount-1; step++) { lastQ = reachedQ; reachedQ = new java.util.LinkedList (); while (lastQ.size() != 0) { int reachedVertex = lastQ.removeFirst(); int pathLen = lastQ.removeFirst(); for each (vertex, v, in the adjacency list of reachedVertex) { lastQ.addLast( v ); lastQ.addLast( pathLen + getArcWeight(reachedVertex,v) ); if ( v == toV && && pathLen+getArcWeight(reachedVertex,v) < shortestPathSoFar ) shortestPathSoFar = pathLen+getArcWeight(reachedVertex,v); } return shortestPathSoFar; }
...with Negative Weights Question: What must change to allow for negative weights? Answer: Dijkstra’s algorithm does not work A B C
Multilist A multilist implementation: (1) stores vertices in a list. Example (2) stores arcs in adjacency lists, but using pointers back to from vertices.
Adjacency Matrices Yet another representation - one bit per potential arc. Performance? boolean[][] digraph = boolean[maxV][maxV]; [0] [1] [2] [3] [4] [5] [6] [0] [1] [2] [3] [4] [5] [6]
Trees & Forests How would you define a tree (from an undirected graph)? A forest is an undirected graph consisting of zero or more unconnected components such that each component is a tree.
Spanning Tree A spanning tree for a particular graph is a tree that (1)includes all of the graph’s vertices and (2) includes a subset of the graph’s edges. Suggest example spanning trees.
Minimum Weight Spanning Tree A minimum weight spanning tree for a particular weighted graph is a spanning tree with total of all edge weights less than or equal to that of all other spanning trees for the graph. Applications?
Kruskal’s Algorithm Construct a sequence of forests (F 0, F 1,... F n ) using only vertices and edges from an original digraph D, such that (a) F 0 is the empty forest. (b) F j+1 is formed by adding an edge and incident vertices to F j. This edge must have minimum weight among D’s edges that are not in F j.
Kruskal’s Algorithm Example F 0 : the empty forest F 1 ?
Prim’s Algorithm Construct a sequence of trees (T 1, T 2,... T n ) using only vertices and edges from an original digraph D, such that (a) T 1 consists of any single vertex of D. (b) T j+1 is formed by adding an edge and vertex to T j. This edge must be have minimum weight among D’s edges that are not in T j and are incident to one of T j ’s vertices.
Prim’s Algorithm Example T 1 ?