Chapter 43 ~ The Body’s Defenses phagocytes lymphocytes attacking

Slides:



Advertisements
Similar presentations
Fighting the Enemy Within! Immune / Lymphatic System
Advertisements

The Immune System Pt 2 Acquired Immunity 3 rd Line of Defense B Cells and T Cells Lymphocyte Antibodies Get down with the Sickness.
AP Biology  Immunoglobulins  IgM  1st immune response  activate complement proteins  IgG  2nd response, major antibody circulating in plasma  promote.
AP Biology Immune System phagocytic leukocyte Fighting the Enemy Within! Big Questions: 1.What is the purpose of a immune system? 2.How does the immune.
The Immune System Avenues of attack  Points of entry  digestive system  respiratory system  urogenital tract  break in skin  Routes of attack 
Dispatch 1)Take out April calendar and pick up a book -Today is the review (nut/lunch and afterschool) -This Sat is the AP Exam # or Wed, April.
Immune System Chapter 43 Parts of this power point are from Kim Foglia.
Lecture #19 Date _________
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System Jay Swan Cincinnati, Ohio NK cells attacking cancer cell endocytosis of bacteria by phagocytic leukocyte.
Chapter 33-Immune System
Immune / Lymphatic System
The Body Defenses. Body Defense Overview Innate Immunity –Barrier Defenses –Internal Defenses Acquired Immunity –Humoral Response –Cell-mediated Response.
AP Biology Immune System phagocytic leukocyte Fighting the Enemy Within! Big Questions: 1.What is the purpose of a immune system? 2.How does the immune.
Chpt 43 Immune System. I. Lines of Defense A. 1 st line of defense –1. non-specific – not targeting any particular antigen The invader, The villain The.
Immune System Chapter 43 ~ The Body’s Defenses. Lines of Defense Nonspecific Defense Mechanisms……
Chapter 43 ~ The Body’s Defenses. Lines of Defense Nonspecific Defense Mechanisms……
Chapter 43 The Body’s Defenses. Lines of Defense Nonspecific Defense Mechanisms……
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system.
“Fighting the Enemy Within”
Immune / Lymphatic System
Chapter 43 ~ The Immune System The 3 R’s- Reconnaissance,
Chapter 43 ~ The Body’s Defenses
AP Biology Immune System phagocytic leukocyte Fighting the Enemy Within! Big Questions: 1.What is the purpose of a immune system? 2.How does the immune.
AP Biology Immune System phagocytic leukocyte Fighting the Enemy Within! Big Questions: 1.What is the purpose of a immune system? 2.How does the immune.
CHAPTER 24 The Immune System Pathogens Disease causing agents such as bacteria, viruses, fungi, protozoans, and other parasites. ( NOT all microorganisms.
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system.
Immunology Chapter 43. Innate Immunity Present and waiting for exposure to pathogens Non-specific External barriers and internal cellular and chemical.
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
Fighting the Enemy Within! Immune / Lymphatic System
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
Chapter 43. Immune System phagocytic leukocyte lymphocytes attacking
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
Ch 31 immune system AP lecture hill.com/sites/ /student_view0/ch apter22/animation__the_immune_response.h tml
Chapter 43 ~ The Body’s Defenses. Lines of Defense.
AP Biology Fever  When a local response is not enough  system-wide response to infection  activated macrophages  higher temperature helps defense.
The Body’s Defenses.
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology 1 Introduction Vertebrates have three levels of defenses -1. The Integumentary System -Skin and mucous membranes provide first line of defense.
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Avenues of attack  Points of entry  ____________ system  urogenital tract  break in skin  Routes of attack  _____________ system.
Immune System Slides pulled from powerpoint by Kim Foglia
Immune / Lymphatic System (Ch. 43) Avenues of attack  Points of entry  digestive system  respiratory system  urogenital tract  break in skin  Routes.
Fighting the Enemy Within! Immune / Lymphatic System
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology Immune / Lymphatic System lymphocytes attacking cancer cell phagocytic leukocyte lymph system Fighting the Enemy Within!
AP Biology s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s Structure of antibodies light chains antigen-binding site heavy chains.
AP Biology Chapter 43. Immune System lymphocytes attacking cancer cell phagocytic leukocyte lymph system.
Immune System Immune System Overview Influenza Infection
Chapter 43 Warm-Up Define the following terms:
The Immune System.
Immune System.
Figure 43.1 An overview of the body's defenses
Chapter 18 Warm-Up Define the following terms:
Chapter 43 Warm-Up Define the following terms:
Chapter 43 Warm-Up Define the following terms:
Chapter 43 Warm-Up Define the following terms:
Fighting the Enemy Within! Immune / Lymphatic System
Chapter 43 Warm-Up Define the following terms:
The body’s defenders.
Immune System phagocytic leukocyte Big Questions:
Fighting the Enemy Within!
Chapter 43 Warm-Up Define the following terms:
Immune System Helm’s (probably way too….) Short Version.
Presentation transcript:

Chapter 43 ~ The Body’s Defenses phagocytes lymphocytes attacking cancer cells

Lines of Defense Nonspecific Defense Mechanisms……

1st line: Non-specific External defense Barrier skin Traps mucous membranes, cilia, hair, earwax Elimination coughing, sneezing, urination, diarrhea Unfavorable pH stomach acid, sweat, saliva, urine Lysozyme enzyme digests bacterial cell walls tears, sweat Lining of trachea: ciliated cells & mucus secreting cells

2nd line: Non-specific patrolling cells Patrolling cells & proteins attack pathogens, but don’t “remember” for next time leukocytes phagocytic white blood cells macrophages, neutrophils, natural killer cells complement system proteins that destroy cells inflammatory response increase in body temp. increase capillary permeability attract macrophages bacteria macrophage yeast

Leukocytes: Phagocytic WBCs Attracted by chemical signals released by damaged cells ingest pathogens digest in lysosomes Neutrophils most abundant WBC (~70%) ~ 3 day lifespan Macrophages “big eater”, long-lived Natural Killer Cells destroy virus-infected cells & cancer cells

Destroying cells gone bad! Natural Killer Cells perforate cells release perforin protein insert into membrane of target cell forms pore allowing fluid to flow in & out of cell cell ruptures (lysis) vesicle natural killer cell perforin cell membrane perforin punctures cell membrane cell membrane virus-infected cell

Anti-microbial proteins Complement system ~20 proteins circulating in blood plasma attack bacterial & fungal cells form a membrane attack complex perforate target cell apoptosis cell lysis extracellular fluid complement proteins form cellular lesion plasma membrane of invading microbe complement proteins bacterial cell

Inflammatory response Damage to tissue triggers local non-specific inflammatory response release chemical signals histamines & prostaglandins capillaries dilate, become more permeable (leaky) delivers macrophages, RBCs, platelets, clotting factors fight pathogens clot formation increases temperature decrease bacterial growth stimulates phagocytosis speeds up repair of tissues

Fever When a local response is not enough system-wide response to infection activated macrophages release interleukin-1 triggers hypothalamus in brain to readjust body thermostat to raise body temperature higher temperature helps defense inhibits bacterial growth stimulates phagocytosis speeds up repair of tissues causes liver & spleen to store iron, reducing blood iron levels bacteria need large amounts of iron to grow Certain bacterial infections can induce an overwhelming systemic inflammatory response leading to a condition known as septic shock. Characterized by high fever and low blood pressure, septic shock is the most common cause of death in U.S. critical care units. Clearly, while local inflammation is an essential step toward healing, widespread inflammation can be devastating.

3rd line: Acquired (active) Immunity Specific defense with memory lymphocytes B cells T cells antibodies immunoglobulins Responds to… antigens cellular name tags specific pathogens specific toxins abnormal body cells (cancer) B cell

How are invaders recognized? Antigens cellular name tag proteins “self” antigens no response from WBCs “foreign” antigens response from WBCs pathogens: viruses, bacteria, protozoa, parasitic worms, fungi, toxins non-pathogens: cancer cells, transplanted tissue, pollen “self” “foreign”

Lymphocytes B cells T cells “Maturation” mature in bone marrow humoral response system “humors” = body fluids attack pathogens still circulating in blood & lymph produce antibodies T cells mature in thymus cellular mediated system attack invaded cells “Maturation” learn to distinguish “self” from “non-self” antigens if react to “self” antigens, cells are destroyed during maturation Tens of millions of different T cells are produced, each one specializing in the recognition of oen particar antigen.

B cells Attack, learn & remember pathogens circulating in blood & lymph Produce specific antibodies against specific antigen Types of B cells plasma cells immediate production of antibodies rapid response, short term release memory cells continued circulation in body long term immunity

Antibodies Proteins that bind to a specific antigen Y Y Y Y Y Y Y Y Y multi-chain proteins binding region matches molecular shape of antigens each antibody is unique & specific millions of antibodies respond to millions of foreign antigens tagging “handcuffs” “this is foreign…gotcha!” Y Y Y antigen- binding site on antibody antigen Y Y Y Y variable binding region Y Y each B cell has ~50,000 antibodies

Structure of antibodies Y Y antigen-binding site Y Y Y s Y variable region Y Y Y Y light chain Y light chain heavy chains light chains antigen-binding site heavy chains B cell membrane

B cell immune response Y Y Y Y Y Y Y 10 to 17 days for full response B cells + antibodies Y invader (foreign antigen) tested by B cells (in blood & lymph) memory cells “reserves” Y Y recognition Y captured invaders macrophage Y clones 1000s of clone cells plasma cells release antibodies Y Y

Induction of Immune Responses Primary immune response: lymphocyte proliferation and differentiation the 1st time the body is exposed to an antigen Plasma cells: antibody-producing effector B-cells Secondary immune response: immune response if the individual is exposed to the same antigen at some later time~ Immunological memory

Vaccinations Immune system exposed to harmless version of pathogen stimulates B cell system to produce antibodies to pathogen “active immunity” rapid response on future exposure creates immunity without getting disease! Most successful against viruses

Jonas Salk 1914 – 1995 Developed first vaccine against polio attacks motor neurons April 12, 1955 Albert Sabin 1962 oral vaccine Poliomyelitis (polio) is caused by a virus that enters the body through the mouth. The virus multiplies in the intestine and invades the nervous system. It can cause total paralysis in a matter of hours. One in 200 infections leads to irreversible paralysis. Among those paralyzed, 5-10 percent die when their breathing muscles are immobilized. Polio mainly affects children under age 5. Salk vaccine = inactivated poliovirus vaccine (IPV), based on poliovirus grown in a type of monkey kidney tissue culture, which is chemically inactivated with formalin Sabin vaccine = oral polio vaccine (OPV) using live but weakened (attenuated) virus, produced by the repeated passage of the virus through non-human cells at sub-physiological temperatures

What if the attacker gets past the B cells in the blood & actually infects (hides in) some of your cells? You need trained assassins to recognize & kill off these infected cells! Attack of the Killer T cells! T But how do T cells know someone is hiding in there? 2007-2008

How is any cell tagged with antigens? Major histocompatibility (MHC) proteins proteins which constantly carry bits of cellular material from the cytosol to the cell surface “snapshot” of what is going on inside cell give the surface of cells a unique label or “fingerprint” MHC protein Who goes there? self or foreign? T or B cell MHC proteins displaying self-antigens

How do T cells know a cell is infected? Infected cells digest some pathogens MHC proteins carry pieces to cell surface foreign antigens now on cell membrane called Antigen Presenting Cell (APC) macrophages can also serve as APC tested by Helper T cells MHC proteins displaying foreign antigens infected cell TH cell WANTED T cell with antigen receptors

T cells Attack, learn & remember pathogens hiding in infected cells recognize antigen fragments also defend against “non-self” body cells cancer & transplant cells Types of T cells helper T cells alerts rest of immune system killer (cytotoxic) T cells attack infected body cells memory T cells long term immunity T cell attacking cancer cell

T cell response APC: infected cell recognition or APC: activated killer T cell activate killer T cells APC: infected cell recognition helper T cell interleukin 2 helper T cell interleukin 1 stimulate B cells & antibodies Y or APC: activated macrophage interleukin 2 clones helper T cell Y recognition

Attack of the Killer T cells Destroys infected body cells binds to target cell secretes perforin protein punctures cell membrane of infected cell vesicle Killer T cell Killer T cell binds to infected cell cell membrane perforin punctures cell membrane cell membrane infected cell destroyed target cell

Immune response Y Y pathogen invasion antigen exposure skin skin free antigens in blood antigens on infected cells macrophages (APC) humoral response cellular response B cells alert helper T cells alert T cells plasma B cells memory B cells memory T cells cytotoxic T cells Y antibodies Y antibodies

Immunity in Health & Disease Active immunity: long term/ natural: conferred immunity by recovering from disease artificial: immunization and vaccination; produces a primary response Passive immunity: short term transfer of immunity from one individual to another • natural: mother to fetus; breast milk • artificial: rabies antibodies ABO blood groups (antigen presence) Rh factor (blood cell antigen); Rh- mother vs. an Rh+ fetus (inherited from father)

Immune system & Blood type antigen on RBC antibodies in blood donationstatus A type A antigens on surface of RBC anti-B antibodies __ B type B antigens on surface of RBC anti-A antibodies AB both type A & type B antigens on surface of RBC no antibodies universal recipient O no antigens on surface of RBC anti-A & anti-B antibodies universal donor Matching compatible blood groups is critical for blood transfusions A person produces antibodies against foreign blood antigens

Abnormal immune function I Allergies hypersensitive responses to environmental antigens (allergens); mast cells release histamine causes dilation and blood vessel permeability, epinephrine Antihistamines can relieve symptoms anaphylactic shock: life threatening reaction to injected or ingested allergens.

Abnormal immune function II Autoimmune disease: The system turns against the body’s own molecules Examples: multiple sclerosis, lupus, rheumatoid arthritis, insulin-dependent diabetes mellitus Rheumatoid arthritis

Abnormal immune function III Immunodeficiency disease: Immune components are lacking, and infections recur Ex: SCIDS Severe combined immunodeficiency (bubble-boy); A.I.D.S., Acquired Immunodeficency syndrome

Abnormal immune function IV Human Immunodeficiency Virus virus infects helper T cells helper T cells don’t activate rest of immune system: killer T cells & B cells also destroys helper T cells AIDS: Acquired ImmunoDeficiency Syndrome infections by opportunistic diseases death usually from “opportunistic” infections pneumonia, cancers HIV infected T cell