1 Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution.

Slides:



Advertisements
Similar presentations
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Advertisements

Quantifying sub-grid cloud structure and representing it GCMs
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
R. Forbes, 17 Nov 09 ECMWF Clouds and Radiation University of Reading ECMWF Cloud and Radiation Parametrization: Recent Activities Richard Forbes, Maike.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
A Methodology for Simultaneous Retrieval of Ice and Liquid Water Cloud Properties O. Sourdeval 1, L. C.-Labonnote 2, A. J. Baran 3, G. Brogniez 2 1 – Institute.
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Earth System Science Teachers of the Deaf Workshop, August 2004 S.O.A.R. High Earth Observing Satellites.
1 An initial CALIPSO cloud climatology ISCCP Anniversary, July 2008, New York Dave Winker NASA LaRC.
Microphysical and radiative properties of ice clouds Evaluation of the representation of clouds in models J. Delanoë and A. Protat IPSL / CETP Assessment.
Variability of Liquid Water Path in Marine Boundary Layer Clouds
Evaluation of ECHAM5 General Circulation Model using ISCCP simulator Swati Gehlot & Johannes Quaas Max-Planck-Institut für Meteorologie Hamburg, Germany.
Wesley Berg, Tristan L’Ecuyer, and Sue van den Heever Department of Atmospheric Science Colorado State University Evaluating the impact of aerosols on.
Climate modeling Current state of climate knowledge – What does the historical data (temperature, CO 2, etc) tell us – What are trends in the current observational.
European Geosciences Union General Assembly 2006 Vienna, Austria, 02 – 07 April 2006 Paper’s objectives: 1. Contribute to the validation of MODIS aerosol.
Lee Smith Anthony Illingworth
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California 1 Joao Teixeira, Brian.
Institut Pierre-Simon Laplace (IPSL) Bringing together key laboratories of the Paris area in the field of environmental studies.
© Crown copyright Met Office COSP: status and CFMIP-2 experiments A. Bodas-Salcedo CFMIP/GCSS meeting, Vancouver, 8-12 June 2009.
Evaluation of cloudiness in LMDZ GCM using CALIPSO and PARASOL H. Chepfer, S. Bony, G. Cesana, JL Dufresne, D. Konsta, LMD/IPSL D. Winker, NASA/LaRC D.
MODIS Regional and Global Cloud Variability Brent C. Maddux 1,2 Steve Platnick 3, Steven A. Ackerman 1,2, Paul Menzel 1, Kathy Strabala 1, Richard Frey.
Photo by Dave Fratello. Focus To evaluate CAM5/CARMA at 1x1 degree resolution with aircraft observations. - Improve cirrus cloud representation in the.
Cyclone composites in the real world and ACCESS Pallavi Govekar, Christian Jakob, Michael Reeder and Jennifer Catto.
Influence of ice supersaturation, temperature and dynamics on cirrus occurrence near the tropopause N. Lamquin (1), C.J. Stubenrauch (1), P.-H. Wang (2)
Evaluation of cloudiness simulated by climate models using CALIPSO and PARASOL H. Chepfer Laboratoire Météorologie Dynamique / Institut Pierre Simon Laplace,
LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
ENSEMBLES General Assembly Santander, Spain, 23 October 2008 RT5: Evaluation Objective:comprehensive and independent evaluation of the performance of the.
Operation of Backscatter Lidar at Buenos Aires (34.6 S / 58.5 W) for the Retrieval and Analysis the Atmospheric Parameters in Cirrus Clouds, Tropopause.
Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Erica K. Dolinar Xiquan Dong and Baike Xi.
LMD LMD Science Team CALIPSO – March M.Chiriaco, H.Chepfer, V.Noel, A.Delaval, M.Haeffelin Laboratoire de Météorologie Dynamique, IPSL, France P.Yang,
Clouds in the Southern midlatitude oceans Catherine Naud and Yonghua Chen (Columbia Univ) Anthony Del Genio (NASA-GISS)
Initial Trends in Cloud Amount from the AVHRR Pathfinder Atmospheres Extended (PATMOS-x) Data Set Andrew K Heidinger, Michael J Pavolonis**, Aleksandar.
Soil moisture content at SIRTA ( m 3 /m 3 ) at different depths. SIRTA’s data has been transformed to have the same amplitude as ORCHIDEE’s simulation.
1 Mathieu Reverdy Hélène Chepfer Workshop EECLAT janvier 2013 Implementation of ATLID/Earthcare lidar simulator within CFMIP–Observation Simulator.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
Synthesis NOAA Webinar Chris Fairall Yuqing Wang Simon de Szoeke X.P. Xie "Evaluation and Improvement of Climate GCM Air-Sea Interaction Physics: An EPIC/VOCALS.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Identifying 3D Radiative Cloud Effects Using MODIS Visible Reflectance Measurements Amanda Gumber Department of Atmospherics and Oceanic Sciences/CIMSS.
Andrew Heidinger and Michael Pavolonis
Steve Klein and Jim Boyle Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Mark Webb United Kingdom Meteorological.
Feng Zhang and Aris Georgakakos School of Civil and Environmental Engineering, Georgia Institute of Technology Sample of Chart Subheading Goes Here Comparing.
Matthew Shupe Ola Persson Paul Johnston Duane Hazen Clouds during ASCOS U. of Colorado and NOAA.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
April Hansen et al. [1997] proposed that absorbing aerosol may reduce cloudiness by modifying the heating rate profiles of the atmosphere. Absorbing.
Use of Mesoscale and Microscale Results to Improve the Mars Climate Database Near-Surface Variability Model E. Millour, F. Forget, A. Spiga April 6, 2011.
Yuying Zhang, Jim Boyle, and Steve Klein Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory Jay Mace University.
Radiative Impacts of Cirrus on the Properties of Marine Stratocumulus M. Christensen 1,2, G. Carrió 1, G. Stephens 2, W. Cotton 1 Department of Atmospheric.
Thomas Ackerman Roger Marchand University of Washington.
Introduction 1. Advantages and difficulties related to the use of optical data 2. Aerosol retrieval and comparison methodology 3. Results of the comparison.
Use of a high-resolution cloud climate data set for validation of Rossby Centre climate simulations Presentation at the EUMETSAT Meteorological Satellite.
Evaluation of cloudy convective boundary layer forecast by ARPEGE and IFS Comparisons with observations from Cabauw, Chilbolton, and Palaiseau  Comparisons.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Barbuda Antigua MISR 250 m The Climatology of Small Tropical Oceanic Cumuli New Findings to Old Problems (Analysis of EOS-Terra data) Larry Di Girolamo,
Cloud fraction in midlatitude cyclones: observations vs models Catherine Naud, Columbia University Collaborators: James Booth (Columbia), Tony Del Genio.
Consistent Earth System Data Records for Climate Research: Focus on Shortwave and Longwave Radiative Fluxes Rachel T. Pinker, Yingtao Ma and Eric Nussbaumer.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Cloud, radiation, and precipitation changes with dynamic regime: An observational analysis and model evaluation study PI: George Tselioudis Co-PI: Chris.
Vertically resolved CALIPSO-CloudSat aerosol extinction coefficient in the marine boundary layer and its co-variability with MODIS cloud retrievals David.
Investigating Cloud Inhomogeneity using CRM simulations.
Overview of Downscaling
Dave Winker1 and Helene Chepfer2
Relationships inferred from AIRS-CALIPSO synergy
Using A-train observations to evaluate clouds in CAM
+ = Climate Responses to Biomass Burning Aerosols over South Africa
Application of Aeolus Winds
Assessment of NASA GISS CMIP5 and post-CMIP5 Simulated Clouds and Radiation fluxes Using Satellite Observations 1/15/2019 Ryan Stanfield(1), Xiquan Dong(1),
interannual variability and the impact of cloud cover
Presentation transcript:

1 Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution spatiale pour évaluer la paramétrisation des processus nuageuses dans les modèles climatiques. D. Konsta, H. Chepfer, J-L. Dufresne, S.Bony, G. Cesana Laboratoire de Météorologie Dynamique LMD Institut Pierre Simon Laplace IPSL, Paris Seminaire INTRO, 30 September 2010

2 Climate Models Observations Evaluation of clouds in climate models Data processing (starting from level1) : Lidar CALIPSO (Cloud cover: 330m,Vertical structure: 30m) Radiometer PARASOL (reflectance: 6km) Radiometer MODIS (reflectance: 250m- 500m-1km) CFMIP-OBS: observational datasets consistent with the simulator CALIPSO – GOCCP PARASOL- reflectance in 1constant direction (θv=30°, φv=320°) COSP Simulator: - Subgrid cloud simulator-SCOPS - Lidar simulator - PARASOL simulator Simulated Datasets CALIPSO-like PARASOL-like consistency LMDZ5 LMDZ-New Physics

3 Zonal Mean Cloud Fraction – monthly mean Latitude Pressure (hPa) Latitude CALIPSO-GOCCP OBSLMDZ New Physics +SIM LMDZ5LMDZ New Physics LMDZ5 Overestimate: - High clouds Underestimate: - Tropical low/mid clouds - Congestus - Mid level mid lat LMDZ New Physics Better representation of clouds LMDZ5+SIM

4 Cloud Cover and Cloud Vertical Distribution in circulation regimes - Monthly mean ω500 (hPa/day) Pressure CF CALIPSO-GOCCPCF LMDZ5+SIMCF LMDZ new+SIM OBSERVATIONS: - Subsidence regimes → Strong presence of low stratiform clouds - Convective regimes → clouds at high troposphere + mid level clouds Tropical ocean LMDZ5: -underestimation of low level clouds -no mid level clouds -overestimation of high convective clouds LMDZ New Physics: -representation of boundary layer clouds in all regimes -overestimation of mid level clouds in one single layer -fewer high clouds

5 Clouds Optical depth (or Reflectance) Radiometer PARASOL: directional reflectances, selection of one constant single direction (θ v =30°, φ s - φ v =320°)  Reflectance is a proxy of optical thickness Spherical Particles Non Spherical Particles (for θ s =30°) Optical Thickness Reflectance PARASOL Reflectance 1constant direction

6 Cloud Cover and All Sky Reflectance – monthly mean Error compensations between Total Cloud Cover and Optical depth (vertically integrated value within the lat x lon grid box) → Need to evaluate the cloud parameterizations in climate models ALL SKY REFLECTANCE CLOUD FRACTION LMDZ New Physics +parasol simulator LMDZ5 +lidar simulator PARASOL 1con.dir. OBS CALIPSO-GOCCP OBS LMDZ New Physics +lidar simulator LMDZ5 +parasol simulator

7 Cloud Cover and Cloud Optical Depth in circulation regimes - Monthly mean CLOUDY REFLECTANCECLOUD FRACTION ω500 (hPa/day) OBS LMDZ5+SIM LMDZ new+SIM Tropical ocean -Subsidence regimes: strong underestimation of cloud fraction but strong overestimation of cloud optical depth (less from LMDZ New Physics) -Convective regimes: underestimation of cloud cover and cloud optical depth → Need to evaluate the cloud parameterizations in climate models

To evaluate the cloud parameterizations in climate models: Monthly mean observations are not sufficient We need to use high resolution (spatial and temporal ) observations 8

9 A case study: low tropical boundary layer clouds - high resolution obs - Impact of the spatial resolution of the sensors Need a clean separation clear/cloudy Need colocated and simultaneous observations CALIPSO Level 1 CALIPSO-GOCCP CLOUDSAT Reflectance MODIS 1km Reflectance MODIS 500m Reflectance MODIS 250m Reflectance CALIPSO 125m CF MODIS 5km CF PARASOL 18.5km Altitude (km) Latitude Longitude Cloud Fraction 0 1 Reflectance MODIS CALIPSO PARASOL

A methodology: from the case study to global statistics using high spatial resolution data Reflectance MODIS 250m CDF PDF 1-CF 1° All Sky Refl=0.04 Cloudy Refl=0.07 Clear Refl=0.02 =0.4 =0.6 Same methodology for simulator’s outputs  In each grid box (obs/mod): Cloud Fraction and Cloudy Refl

11 Cloud Optical Depth Evaluation of the model at high resolution → Overestimation of low values of All-Sky Reflectance and underestimation of high values. BUT for cloudy reflectance (no clear sky contribution): → More optically thick clouds and less optically thin clouds simulated. OBS- PARASOL Cloudy Reflectance All SKy Reflectance LMDZ5+SIM LMDZ new+SIM PDF Optical thickness (spherical particles and θ s =30°) Corresponding CDF: 50% of the cloud:Obs optical depth = 2.6 Models cloud optical depth = 4.8 Tropical ocean

12 Relationship between Cloud Cover and Cloud Optical Depth OBSERVATIONS Tropical ocean Cloud Fraction 01 All Sky Reflectance Cloudy Reflectance Obs monthly Obs daily Obs daily → The relation between optical depth and Cloud Fraction changes with the scale of averaging changes in time (monthly.vs. daily) and in space (all sky.vs. cloudy)

13 Relationship between Cloud Cover and Cloud Optical Depth Tropical ocean Cloud Fraction 01 All Sky Reflectance Cloudy Reflectance Obs monthly Obs daily Obs daily Cloud Fraction LMDZ5 daily LMDZ new daily LMDZ5 daily LMDZ new daily LMDZ5 monthly LMDZ new monthly → Model has difficulties to reproduce the ‘instantaneous’ relationship => Here after, we use « High Resolution » : Cloudy Refl, Daily

14 Relationship between Cloud Cover and Cloud Optical Depth for high and low tropical oceanic clouds Cloudy Reflectance Cloudy Reflectance Cloud Fraction High clouds Low clouds OBS LMDZ5 LMDZ- new Error compensation between optically thin high clouds and very thick boundary layer clouds Underestimation of the Cloud Fraction Tropical ocean

15 Cloud Cover versus Vertical distribution versus Cloud Reflectance Pressure Cloud Fraction (CF(p)/CFtot) OPTICALLY THIN CLOUDSOPTICALLY THICK CLOUDS OBS- PARASOL LMDZ5+SIM LMDZ new+SIM Tropical ocean

16 Focus on low level boundary layer clouds: Relationship between the Cloud Top Pressure and the Cloudy Reflectance Tropical ocean Cloudy Reflectance Or Optical depth Cloudy Reflectance Ptop OBSERVATIONS LMDZ5+SIM LMDZ new+SIM OBS: The cloud optical depth increases with the cloud top altitude (and with the cloud cover) → the cloud grows vertically (and horizontally) Difficulties of the model to reproduce the relationship

17 Conclusions A statistical view of clouds with A-train observations: simultaneous and independent observations of multiple cloud parameters at high resolution→ assess cloud process parameterization in climate models the spatial resolution of different sensors and the temporal resolution of the statistical analysis are critical study of cloud properties only (excluding ‘Clear sky’ contribution) link between Cloud Cover, Vertical Structure and Cloud Optical Depth low clouds: cloudy reflectance increase with the cloud top altitude LMDZ model evaluation: Error’s compensations between - underestimation of low tropical clouds/ few medium clouds and overestimation of high clouds -underestimation of the total Cloud Cover and overestimation of the Cloud Optical Depth (mainly in regions of subsidence) -Optically thinner high clouds and optically thicker boundary layer clouds Better representation of clouds from LMDZ New Physics Perspectives: Similar analysis based on “high resolution” A-train observations to evaluate other climate models Analysis of the subgrid variability (observations and models)

18 Thank you!