Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch,

Slides:



Advertisements
Similar presentations
Institut für Physik der Atmosphäre Working Group Precipitation Processes and Life cycle.
Advertisements

Institut für Physik der Atmosphäre Identification of Convective Hotspots in Mountainous Terrain Martin Hagen, Leslie Grebe, Joël van Baelen, Evelyne Richard.
Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Institut für Physik der Atmosphäre Life Cycle of Deep Convection during the COPS Field Campaign (LIFCOC) Martin Hagen, Hartmut Höller, George Craig Institut.
Slide 1 Improved Initialization for Precipitation Forecasts: Analysis of the ETReC missions during COPS 2007 Andreas Dörnbrack, Martin Wirth, and George.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapor and Vertical Humidity Fluxes.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapour and Vertical Humidity.
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre High Resolution Airborne DIAL Measurements of Water Vapour and Vertical Humidity.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
C. Flamant (1), C. Champollion (1,2), S. Bastin (1) and E. Richard (3) (1) Institut Pierre-Simon Laplace, UPMC/CNRS/UVSQ (2) Géosciences Montpellier UM2/CNRS,
Meteorologisches Institut der Universität München
WMO International Cloud Modeling Workshop, July 2004 A two-moment microphysical scheme for mesoscale and microscale cloud resolving models Axel Seifert.
Meso-NH model 40 users laboratories
Allison Parker Remote Sensing of the Oceans and Atmosphere.
Mesoscale Convective Vortices (MCVs) Chris Davis (NCAR ESSL/MMM and RAL) Stan Trier (NCAR ESSL/MMM) Boulder, Colorado 60-h Radar Composite Animation (00.
Snowmass, 18 July 2007 Impact Studies with Airborne Doppler Lidar Observations: A-TReC to T-PARC Martin Weissmann, Andreas Dörnbrack, Stephan Rahm, Oliver.
Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations SCOTT A. BRAUN AND WEI-KUO TAO PRESENTATION.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
Issues in Very High Resolution Numerical Weather Prediction Over Complex Terrain in Juneau, Alaska Don Morton 1,2, Delia Arnold 3,4, Irene Schicker 3,
Institut für Physik der Atmosphäre WG4: Data Assimilation and Predictability George C. Craig DLR-Institut für Physik der Atmosphäre.
What we have learned about Orographic Precipitation Mechanisms from MAP and IMPROVE-2: MODELING Socorro Medina, Robert Houze, Brad Smull University of.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
THE BLACK FOREST STORM OF 15 JULY 2007: NUMERICAL SIMULATION AND SENSITIVITY STUDIES Evelyne Richard 1, Jean-Pierre Chaboureau 1 Cyrille Flamant 2 and.
Institut für Physik der Atmosphäre Status of working group Precipitation Processes and Live cycle Martin Hagen DLR Oberpfaffenhofen.
2.4 Some observations from the JET2000 experiment Thorncroft et al, 2003 BAMS Parker et al, 2005 QJRMS.
Institut für Physik der Atmosphäre ETReC 2007 Hans Volkert (for George Craig) DLR-Institut für Physik der Atmosphäre.
4 th COPS Workshop, Hohenheim, 25 – 26 September 2006 Modeling and assimilation efforts at IPM in preparation of COPS Hans-Stefan Bauer, Matthias Grzeschik,
NOAA P-3 activities during NAME Michael Douglas, NSSL Co-PI’s: Bill Cotton CSU Joe Zehnder, ASU G.V. Rao, SLU.
Observations and simulations of the wind structure in the boundary layer around an isolated mountain during the MATERHORN field experiment Stephan F.J.
Application of a High-Pulse-Rate, Low-Pulse-Energy Doppler Lidar for Airborne Pollution Transport Measurement Mike Hardesty 1,4, Sara Tucker 4*,Guy Pearson.
Kick-Off-Treffen SPP, Bonn October 2006 Improved Water Vapour and Wind Initialisation for Precipitation Forecasts: Impact Studies with the ECMWF.
Meso-γ 3D-Var Assimilation of Surface measurements : Impact on short-range high-resolution simulations Geneviève Jaubert, Ludovic Auger, Nathalie Colombon,
Surface and Boundary-Layer Fluxes during the DYNAMO Field Program C. Fairall, S. DeSzoeke, J. Edson, + Surface cloud radiative forcing (CF) Diurnal cycles.
Drizzle, Shallow Events Martin Hagen with the help from Elena Saltikoff, Paul Joe and others Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,
Dehydration in the Tropical Tropopause Layer of a Cloud- Resolving Model University of Reading, Department of Meteorology * DLR Oberpfaffenhofen, Institut.
High-resolution modelling in mountainous areas: MAP results Evelyne Richard Laboratoire d’Aérologie CNRS / Univ. Paul Sabatier Toulouse, France.
Non-hydrostatic Numerical Model Study on Tropical Mesoscale System During SCOUT DARWIN Campaign Wuhu Feng 1 and M.P. Chipperfield 1 IAS, School of Earth.
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
IHOP Workshop, Boulder, CO, March, 2003 DLR-DIAL Observations Instrument PI: Gerhard Ehret Instrument operation: Gorazd Poberaj, Andreas Fix, Martin.
High resolution simulation of August 1 AMMA case: impact of soil moisture initial state on the PBL dynamics and comparison with observations. S. Bastin.
Model representation of the diurnal cycle and moist surges along the Gulf of California during NAME Emily J. Becker and Ernesto Hugo Berbery Department.
Experiences with 0-36 h Explicit Convective Forecasting with the WRF-ARW Model Morris Weisman (Wei Wang, Chris Davis) NCAR/MMM WSN05 September 8, 2005.
Falcon coordinator: Martin Weissmann Aircraft manager: Andrea Hausold Falcon Steering Committee (SC): M. Weissmann, P. Harr, T. Nakazawa, S. Jones, H.-S.
Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty, Alan Brewer, Brandi McCarty, Christoph.
Objective Evaluation of the Meso-NH Simulations during Hibiscus-Troccinox-Troccibras I.Forecasts for the TROCCINOX campaign II.Three case studies: 13 Feb,
Three real case simulations by Meso-NH validated against satellite observations J.-P. Chaboureau and J.-P. Pinty Laboratoire d’Aérologie, Toulouse 1.Elbe.
Image structures: rain shafts, cold pools, gusts Separate rain fall velocity from air velocity – turbulence retrieval– microphysical retrieval Diurnal.
This is tes box Multi-scale Analyses of Moisture and Winds during the 3 and 9 June IHOP Low-Level Jet Cases Edward Tollerud, Fernando Caracena, Adrian.
French contribution to T-NAWDEX G. Rivière, P. Arbogast CNRM-GAME, CNRS & Météo-France Karlsruhe, 03/20/2013.
Snapshots of WRF activities in the GFI/Iceland groups.
Moist processes involved in IOP13 and IOP16. Fanny DUFFOURG Olivier NUISSIER Christine LAC CNRM-GAME / Météo-France & CNRS HyMeX ST-WV meeting, Toulouse,
MAP IOP 10 South Foehn Event in the Wipp Valley: Verification of High-Resolution Numerical Simulations with Observations A. Gohm*, G. Zängl**, G. J. Mayr*
Instruments. In Situ In situ instruments measure what is occurring in their immediate proximity. E.g., a thermometer or a wind vane. Remote sensing uses.
How useful are findings of MAP for operational mesoscale model development? Hans Volkert Institut für Physik der Atmosphäre DLR-Oberpfaffenhofen Wessling,
ISTP 2003 September15-19, Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty,
1 Current and planned research with data collected during the IFEX/RAINEX missions Robert Rogers NOAA/AOML/Hurricane Research Division.
COSMO model simulations for COPS IOP 8b, 15 July 2007 Jörg Trentmann, Björn Brötz, Heini Wernli Institute for Atmospheric Physics, Johannes Gutenberg-University.
Juliane Schwendike and Sarah Jones The Interaction between Convection and African Easterly Waves:
INNER CORE STRUCTURE AND INTENSITY CHANGE IN HURRICANE ISABEL (2003) Shuyi S. Chen and Peter J. Kozich RSMAS/University of Miami J. Gamache, P. Dodge,
ESSL Holland, CCSM Workshop 0606 Predicting the Earth System Across Scales: Both Ways Summary:Rationale Approach and Current Focus Improved Simulation.
Evolution of Hurricane Isabel’s (2003) Vortex Structure and Intensity
Rosenstial School of Marine and Atmospheric Science
Supervisors : Alan Gadian, Sarah-Jane Lock, Andrew Ross
Daniel Leuenberger1, Christian Keil2 and George Craig2
Winter storm forecast at 1-12 h range
Doppler Lidar Measurements at DLR
Presentation transcript:

Campaign data for parameterization tests: Examples from MAP‘99 VERTIKATOR’02, AWIATOR‘03 Hans Volkert, Thorsten Fehr, Christoph Kiemle, Oliver Reitebuch, Arnold Tafferner and Martin Weißmann DLR Oberpfaffenhofen, D Institut für Physik der Atmosphäre Evelyne Richard Laboratoire d‘Aérologie, CNRS & Université Paul Sabatier Toulouse, F

“Whenever possible, parameterizations should … be quantitatively validated against observations“ (Peixoto & Oort 1991) Textbook knowledge: High resolution … … simulation models need special data, e.g from dedicated field campaigns here:wind,boundary layer, precipitation microphysics Which variables and processes?

The campaigns MAP-SOP 1999Mesoscale Alpine Programme Special Observing Period „Weather and Alps“7 Sept. – 15 Nov 1999 cf.Bougeault et al. 2001, BAMS 82, 433–462 wind QJ, Jan B (No. 588), 129, VERTIKATOR-02Vertikaler Austausch, Trans- port und Orographie „Alpine Pumping“July 2002, north of the Alps wind & precipitation AWIATOR-03Wake Vortices at airports „Wake Vortex“Aug. 2003, north of Pyrénées wind

MAP-SOP 1999 IOP-15 8 Nov. north Föhn with waves

Rhone Aosta (model) orography (  x=1 km) 1.67–2.00 km aircraft triptych: B-A-C-D, 8 Nov. 1999

L North Föhn 8 Nov ARPEGE ana. 12 UT 500 hPa: flow (max. 30 m/s) geopot. (  =40 gpm) model: Meso-NH with four nests (32, 8, 2, 0.5 km)

Drop-sounding: uniform wind direction ffddTrh  dry moist

Three drop-sondes in 2mins.: reproducibility

vertical velocity: trans-Alpine sections RhoneAostaRhoneValtellina obs + sim (--) F C E legs4 legs10 legs

vertical velocity: 2 & 1/2 km simulation 2 km ½ km RhoneValtellinaRhoneAosta F C E +2 -2

water vapour triptych: lidar-obs. vs. simulation w (C130) mean diff. backs retrieval (s.p.=0.7) sim. obs. 100 ppmv 200

VERTIKATOR , 9, 19 July Alpine pumping & generation of thunderstorms

10 µm-System WIND DLR/CNRS/CNES/Meteo-France vert. res. 250 m hor. res km accuracy m/s 2 µm-System DLR/CTI-MAG1 100 m km m/s Airborne Doppler Lidar at DLR

Flight Track Falcon 8 July : :34 LT Data processing with averaging 3 scanner revolutions: km

east-west gradient in speed (> 4 km) southwest northerly winds along the Alps up to 2.3 km WIND July 8, 2002, 14: :27 LT Track Bodensee  Chiemsee wind speed below 4 m/s (< 2.5 km)

MM5 by L. Gantner, Uni München WIND and MM5 on July 8, 2002 Track Bodensee  Chiemsee WIND: top, 14: :27 LT; MM5: bottom, 14:00 LT

19 July: 2 µm Lidar and vertical velocity

shallow medium steep 40 km 9 July: Bistatic Doppler and polarimetric radar

steepshallow medium 12 min later...

shallow medium steep

12:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

13:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

13:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

14:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

14:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

15:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

15:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

16:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

16:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

17:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

17:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

18:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

18:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

19:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

19:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

20:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

20:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

21:00 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

21:30 UT Meso-NH 2 km res. surf. wind, all hydromet., accum. precip. storm gene- Alps

AWIATOR August Diurnal cycle of surface profiles RASS vs. LM & MM5

Tarbes Airport Airport Tarbes Pau The Pyrenees LM forecast domain (DWD) MM5 forecast domain m/s LM MM5 Wake Predictor P2P MM5 vertical grid Modelling chain: LM–MM5–P2P

00 UT virt. temperaturewind speed

01 UT virt. temperaturewind speed

02 UT virt. temperaturewind speed

03 UT virt. temperaturewind speed

04 UT virt. temperaturewind speed

05 UT virt. temperaturewind speed

06 UT virt. temperaturewind speed

07 UT virt. temperaturewind speed

08 UT virt. temperaturewind speed

09 UT virt. temperaturewind speed

10 UT virt. temperaturewind speed

11 UT virt. temperaturewind speed

12 UT virt. temperaturewind speed

13 UT virt. temperaturewind speed

14 UT virt. temperaturewind speed

15 UT virt. temperaturewind speed

16 UT virt. temperaturewind speed

17 UT virt. temperaturewind speed

18 UT virt. temperaturewind speed

19 UT virt. temperaturewind speed

20 UT virt. temperaturewind speed

21 UT virt. temperaturewind speed

22 UT virt. temperaturewind speed

23 UT virt. temperaturewind speed

24 UT virt. temperaturewind speed

Concluding messages Potentially useful, non-standard data are available for parameterization test of high-resolution models; here: remotely sensed wind and precipitation A suitable number of case-studies may be more revealing than standard statistics Modelling and measuring camps have to come closer together DANKE for listening to me !!!