Towards SKA Studies of the Radio Transient Universe Peter Hall, Tim Colegate, J-P Macquart, Nathan Clarke, Steven Tingay, Cathryn Trott and Randall Wayth.

Slides:



Advertisements
Similar presentations
Applications of one-class classification
Advertisements

SKADSMTAvA A. van Ardenne SKADS Coördinator ASTRON, P.O. Box 2, 7990 AA Dwingeloo The Netherlands SKADS; The.
Ben Barsdell Matthew Bailes Christopher Fluke David Barnes.
Jeroen Stil Department of Physics & Astronomy University of Calgary Stacking of Radio Surveys.
NAIC-NRAO School on Single-Dish Radio Astronomy. Arecibo, July 2005
The transient and variable radio sky Rob Fender (University of Southampton) In association with Transients Key Science Projects at LOFAR, ASKAP and MeerKAT.
7/26/12W. Majid1 Crab Giant Pulses W. Majid *, S. Ellingson (PI), C. Garcia-Miro, T. Kuiper, J. Lazio, S. Lowe, C. Naudet, D. Thompson, K. Wagstaff * Jet.
SKADS: Array Configuration Studies Implementation of Figures-of-Merit on Spatial-Dynamic-Range Progress made & Current status Dharam V. Lal & Andrei P.
Indo – SA Joint Astronomy Workshop, August 2012 / 22 Study of Foregrounds and Limitations to EoR Detection Nithyanandan Thyagarajan N. Udaya Shankar Ravi.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
Pulsars with LWA1 Paul S. Ray and Sean Cutchin Naval Research Laboratory 2012 July 26 Basic research in radio astronomy at NRL is supported by NRL/ONR.
SKAMP - the Molonglo SKA Demonstrator M.J. Kesteven CSIRO ATNF, T. J. Adams, D. Campbell-Wilson, A.J. Green E.M. Sadler University of Sydney, J.D. Bunton,
The Transient Radio Sky to be Revealed by the SKA Jim Cordes Cornell University AAS Meeting Washington, DC 8 January 2002.
Growth of Structure Measurement from a Large Cluster Survey using Chandra and XMM-Newton John R. Peterson (Purdue), J. Garrett Jernigan (SSL, Berkeley),
Sascha D-PAD Sparse Aperture Array.
A bright millisecond radio burst of Extragalactic origin Duncan Lorimer, Matthew Bailes, Maura McLaughlin, David Narkevic and Froney Crawford Science (in.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Digital Signal Processing.
CSIRO. Paul Roberts Digital Receivers SKANZ 2012 Digital Receivers for Radio Astronomy Paul Roberts CSIRO Astronomy and Space Science Engineering Development.
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 28 Feb 2000  Frontiers of Neutron Star Science  Complete census of transient.
Random Media in Radio Astronomy Atmospherepath length ~ 6 Km Ionospherepath length ~100 Km Interstellar Plasma path length ~ pc (3 x Km)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
SKA Introduction Jan Geralt Bij de Vaate Andrew Faulkner, Andre Gunst, Peter Hall.
10 January 2006AAS EVLA Town Hall Meeting1 The EVLA: A North American Partnership The EVLA Project on the Web
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array New VLBA capabilities.
The Murchison Wide Field Array Murchison, ~300 km from Geraldton.
Design and performance of fast transient detectors Cathryn Trott, Nathan Clarke, J-P Macquart ICRAR Curtin University.
Andreas Horneffer for the LOPES Collaboration Detecting Radio Pulses from Air Showers with LOPES.
PULSAR SURVEYS (AO & GBT) Why? How deep can we go? (D max, V max ) Example surveys Hardware Funding.
Recent Results and the Future of Radio Afterglow Observations Alexander van der Horst Astronomical Institute Anton Pannekoek University of Amsterdam.
Review of Ultrasonic Imaging
1 Spectral filtering for CW searches S. D’Antonio *, S. Frasca %&, C. Palomba & * INFN Roma2 % Universita’ di Roma “La Sapienza” & INFN Roma Abstract:
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Extragalactic Source.
Radio Observations of X-ray Binaries : Solitary and Binary Millisecond Pulsars Jeong-Sook Kim 1 & Soon-Wook Kim 2  Department of Space Science and Astronomy.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Fundamental limits of radio interferometers: Source parameter estimation Cathryn Trott Randall Wayth Steven Tingay Curtin University International Centre.
Binary Pulsar Coalescence Rates and Detection Rates for Gravitational Wave Detectors Chunglee Kim, Vassiliki Kalogera (Northwestern U.), and Duncan R.
Arecibo Frontiers – 12 Sep Beyond the Frontiers: The Road From Arecibo to The Radio Synoptic Survey Telescope (RSST) Steven T. Myers National Radio.
Pulsar surveys at Arecibo and Green Bank David Champion Gravity Wave Meeting, Marsfield, Dec 2007.
Searching for Gravitational Waves with LIGO Andrés C. Rodríguez Louisiana State University on behalf of the LIGO Scientific Collaboration SACNAS
S.A. Torchinsky SKADS Workshop 10 October 2007 Simulations: The Loop from Science to Engineering and back S.A. Torchinsky SKADS Project Scientist.
Answers from the Working Group on AGN and jets G. Moellenbrock, J. Romney, H. Schmitt, V. Altunin, J. Anderson, K. Kellermann, D. Jones, J. Machalski,
Array for Microwave Background Anisotropy AMiBA SZ Science AMiBA Team NTU Physics Figure 4. Simulated AMiBA deep surveys of a 1deg 2 field (no primary.
Ramesh Bhat Centre for Astrophysics & Supercomputing Swinburne University of Technology Time Domain Astronomy Meeting, Marsfield, 24 October 2011 Searching.
Large Area Surveys - I Large area surveys can answer fundamental questions about the distribution of gas in galaxy clusters, how gas cycles in and out.
Rotating Radio Transients Maura McLaughlin West Virginia University 12 September 2007.
by Arjun Radhakrishnan supervised by Prof. Michael Inggs
Summary of the Paris SKA Meeting 4-8 September 2006 R. T. Schilizzi.
The Allen Telescope Array Douglas Bock Radio Astronomy Laboratory University of California, Berkeley Socorro, August 23, 2001.
A real-time software backend for the GMRT : towards hybrid backends CASPER meeting Capetown 30th September 2009 Collaborators : Jayanta Roy (NCRA) Yashwant.
Prof. Steven Tingay (ICRAR, Curtin University) Workshop on East-Asian Collaboration on the SKA Daejeon, Korea, November 30 – December 2, 2011 A long baseline.
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
LIGO-G Z The Q Pipeline search for gravitational-wave bursts with LIGO Shourov K. Chatterji for the LIGO Scientific Collaboration APS Meeting.
LIGO-G v2 The Search For Continuous Gravitational Waves Gregory Mendell, LIGO Hanford Observatory on behalf of the LIGO Science Collaboration The.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Stochastic Background Data Analysis Giancarlo Cella I.N.F.N. Pisa first ENTApP - GWA joint meeting Paris, January 23rd and 24th, 2006 Institute d'Astrophysique.
SKA1-low: Cost Considerations AAVP Meeting, ASTRON 14 December, 2011 Tim Colegate, Peter Hall (ICRAR/Curtin) Andre Gunst (SPDO/ASTRON)
Introduction Coalescing binary compact objects for a 1.4 M  neutron star inspiralling into a 10 M  black hole would be in-band for ~200 s. We could detect.
Performance Issues in Doppler Ultrasound 1. 2 Fundamental Tradeoffs In pulsed modes (PW and color), maximum velocity without aliasing is In pulsed modes,
WVU Astronomy / Engineering and The Green Bank Observatory Richard Prestage Scientist, NRAO.
PATTERN RECOGNITION STRATEGIES DETECTION OF FAST TRANSIENTS AS “DATA TRIAGE” Jet Propulsion Laboratory California Institute of Technology David Thompson,
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
EoR power spectrum systematics
p no Bhaswati Bhattacharyya On behalf of GHRSS team
Digital Receivers for Radio Astronomy
Scalable cm-Wavelength Aperture Arrays
Mid Frequency Aperture Arrays
The Q Pipeline search for gravitational-wave bursts with LIGO
Pulsar Timing with ASKAP Simon Johnston ATNF, CSIRO
Rotating Radio Transients
Presentation transcript:

Towards SKA Studies of the Radio Transient Universe Peter Hall, Tim Colegate, J-P Macquart, Nathan Clarke, Steven Tingay, Cathryn Trott and Randall Wayth ICRAR / Curtin Institute of Radio Astronomy

Overview Fast transients in radio astronomy –< 5 s duration for the purpose of this talk Current state of the art –Recent developments at ICRAR/Curtin Event rate formulations Joint ICRAR – JPL work in machine learning + scalable FPGA architecture Strong ASKAP / CRAFT and LOFAR links SKA1 and transients –Pathfinders, trail-blazer experiments VLBA, LOFAR (now) DSN, MWA (this year) KAT 7, MeerKAT (2012 onwards) BETA / ASKAP (2013?) –System architecture implications –Cost considerations Transients instrument affordable in SKA1 context –Representative SKA1 transients system Major new capability, with plenty of room to grow 1

Fast radio transients – astrophysics Fast transients probe –high brightness temperature emission –extreme states of matter –physics of strong gravitational fields Extragalactic impulsive transients would afford a new view of the huge reservoir of baryons in the ionized IGM “Known Knowns” –Giant pulses –Magnetars –RRATs “Known Unknowns” –Lorimer Burst –Annihilating Black Holes –Gravitational Wave Events “Unknown Unknowns” 2

Transients parameter space Multi-dimensional detection optimization, e.g. –Frequency range –Field-of-View (targeted vs untargeted surveys) –Sensitivity limit (  luminosity, distance limits) –Dispersion measure (  distance) –Polarization When detections are one-off (or nearly so) we think in terms of “probability of intercept” –Raw receptor sensitivity (A/T) –Arraying sensitivity (if applicable) –FoV –Observing time (commensal or non-commensal) –Detector characteristics (time resolution, goodness of matched filter approximation,...) Event duration, repetition characteristics (Quasi) periodicity? Maximizing real + reducing false detections is central to SKA-era thinking –Observe as much parameter space as possible (esp. single dish) –Minimize and/or mitigate RFI –Spatially localize candidate events using array Coherent (“voltage”): classical interferometry or tied-array beams Incoherent (“power”): element or sub-array processing Combination: e.g. incoherent-triggered interferometry on stored voltage samples –Automated pipeline needed for all but early experiments 3

Astronomy – technology nexus Discoveries typically follow within 5 years of innovation –Sometimes serendipitously No innovation  no discovery –Watch closely the LOFAR, MWA... space In the absence of other information, maximum parameter space access is our goal Many SKA design and operation insights – especially for transients – sit at the astronomy-engineering interface 4 Nakai et al RTS-relevant serendipity

Large-N arrays: combining signals 5

Metrics and Figures of Merit in transient detection Event rate is key FoM –How good is my transients telescope? Relates properties of a population of radio transient events to its expected detection rate in a survey of finite sensitivity Shows inadequacy of survey speed as a FoM for transients –FoV is an important, independent parameter –Important insights into large-N arrays 6 Courtesy J-P Macquart 1 GHz

Event rate analysis Models telescope performance and science requirements –Specifies optimal solutions, but only for subsets of parameter space –Reveals hitherto “hidden” compromises –Born of science – engineering dialog and provides common ground for continued development Quantifies many characteristics of a search –Optimal strategy maximises the number of events detected –Increasing observation time maximises events detected  commensal observations –Not all virtues are easily quantified (e.g. localisation capability) But we are working on it !) Affected by numerous dependencies –Astrophysical characteristics of expected population and intervening medium –Telescope sensitivity and field-of-view –Search processing hardware and algorithms –Many dependencies vary with frequency Master Title7

Event rate dependencies Processed field of view combination mode (incoherent, coherent) array dimensions number of beams formed and searched frequency 8 Observed pulse duration due to scatter-broadening  direction  frequency Minimum detectable flux density receptor type combination mode fraction of collecting area used frequency Event rate density usually unknown Intrinsic pulse width usually unknown Intrinsic luminosity usually unknown, but can assume various population (Macquart, 2011)  frequency (spectral index)

Example: wide or deep surveys? How much do we gain by increasing sensitivity? 12 (δ ~ 0 when sensitivity-limited and scattering small)

Fly’s eye, incoherent wide-field, or coherent survey? 13 For an array of N elements, each with limiting sensitivity S 0 –Fly’s eye covers N x primary field of view to S 0 –Collimated Incoherent covers 1 x primary FoV to S 0 /N 1/2 –Coherent covers ξ Ω synth =ξ π(λ/d) 2 [Ω synth ≪ Ω primary ] to S 0 /N Which is best? Depends on the slope of the Event Rate vs S 0 line

Fly’s eye, incoherent wide-field, or coherent survey? 14 Fly’s eye or coherent? ξ must be large for the coherent approach to win If δ>0.5 we never win with a coherent survey -e.g high-sensitivity Galactic survey Coherent or collimated incoherent? number of tied-array beams

Trail-blazers and Pathfinders Trailblazer = pre-pathfinder –Indicates how little we really know about finding transients ! –What is an appropriate investment in pathfinder transient systems ? Probe parameter space –New science (we hope) –Provide reasons for SKA to favour particular regions of parameter space ? New architectures and technologies –Commensal + upgradable: forces spigot + instrument thinking –Hardware scalability + firmware/software re-usability New detection algorithms –Machine learning to spot statistical anomalies in large data hyper-cubes –Fast imaging, u,v-plane detection, fundamental estimation limits (Cath Trott presentation) –Both classical matched filtering and/or fast imaging can feed new detectors Investigate system trade-offs –e.g. close algorithm – architecture matching is efficient, but at what cost to flexibility ? 12

State of the survey art 13

14

Example: extragalactic giant pulses Giant pulses from a Crab-like pulsar: -giant pulse frequency = 0.06 s -1 for E > 5 kJy μs -power-law energy (i.e. luminosity) distribution -no known maximum energy -assume no pulse broadening

Example: extragalactic giant pulses For an extragalactic search (green) -homogeneous population with intrinsic event rate per unit volume ρ i -integrate along line-of-sight to determine total detected event rate For targeted observations (blue) -estimate an intrinsic event rate per solid angle: ρ i,Ω -at larger distances, a smaller fraction of events are detectable -more sensitive telescopes see a larger fraction of events -FoV x time increases probability of seeing an event On the plot: Blue lines: for a targeted observation of sensitivity S min, after what FoV x time do we expect to detect a single event? Green lines: if we detect a single event with an observation of some S min and FoV x time, what limit does that place on ρ i (events hr -1 Mpc -3 )?

Search innovations: machine learning Cannot store or analyze peta-scale data volumes. Need immediate, real-time follow-up Solution: adaptive processing chains to handle streaming data –Data mining is continuous –Pattern recognition permits immediate triage and follow-up 17 Courtesy D. Thompson (JPL) and V-FASTR Adaptive self-tuning system

Efficient incoherent de-dispersion New algorithm for selecting samples from the dynamic spectrum (per trial DM) to maximize SNR New algorithm for selecting trial DMs maintaining good SNR performance across the chosen DM range SNR performance comparable to matched filters Efficient, scalable FPGA implementation possible 18 Courtesy N. Clarke, J-P Macquart and C. Trott

Event rate per beam - a.k.a. “bangs per buck” Measures the processing (“cost”) efficiency of searches conducted on a per beam basis –beamforming, de-dispersion, detection algorithms,... Informs choices of receptor combination and search processing modes Spectral index = 0 Spectral index = -1.6 Courtesy T. Colegate and N. Clarke

SKA1 SKA1-low will be efficient as a transients telescope –Much to learn from LOFAR, MWA,... –AAs more efficient when scattering is lower or source spectrum steeper Close-packed AA core makes coherent combination much more efficient than for the dish core Incoherent combination with single pixel feed dishes limited to one beam –Not the case for AAs Dense/sparse SKA1-low transition frequency a key input to event rate per beam models SKA1 will still be a pathfinder in transients science –Plan “appropriate” initial investment + upgrade path –Maximize advantages of large-N array –Exploit SKA1-low potential Future-proofing requires “spigot + instrument” architectural approach Initial strategy: –Incoherent search (collimated commensal) –Coherent localization Provision of memory buffers in coherent signal path –Instrument-side equipment + pipeline supplied by user consortium?

Basic transients system for SKA1 dishes Incoherent detection with coherent follow-up Order-of-magnitude component costs: -FX Uniboard correlator (Szomoru et al., 2011) Transients processor -Hybrid CPU / FPGA ->500 trial DMs -Max DM > 4000 pc cm -3 QuantityCost (k€) Integrator25060 Buffer boards64 Uniboards640 Buffer RAM25060 Transients processor 1100 Storage> 1 PB100 TOTAL960

Conclusion Tantalizing hints of one-off, fast transients (Lorimer etc.) –A confirmed detection would be welcome and significant Contemporary surveys – many with SKA pathfinders – are beginning to probe truly interesting parameter space and set meaningful astrophysical limits –We expect information on the worth of fast transients investment With these (often commensal) surveys has come the impetus to develop algorithms, architectures and information handling techniques for SKA1 and beyond SKA1 can provide great additional insight for relatively little cost Selected recent references –Clarke N., Macquart J-P., and Trott C., “Performance of a Novel Fast Transients Detection System”, ApJ, submitted Jan –Colegate T. and Clarke N., “Searching for Fast Radio Transients with SKA Phase 1”, PASA, 28(4), Nov –Macquart J-P., “Detection Rates for Surveys for Fast Transients with Next Generation Radio Arrays”, ApJ 734(1), 2011 –Wayth R., Tingay S., Deller A., Brisken W., Thompson D and Wagstaff K., “Limits on the Event Rates of Fast Radio Transients from the V-FASTR Experiment”, ApJ, submitted Mar