ANIMAL PHYSIOLOGY: monogastric digestive tract

Slides:



Advertisements
Similar presentations
Unit C: Meeting Nutritional Needs of Animals
Advertisements

Animal, Plant & Soil Science Lesson C3-3 Major Parts of the Digestive System.
Animal Digestion Structures and Functions
Understanding Animal Digestion
Single stomach Eat feed low in fiber Humans are also non-ruminants.
The Human Digestive System
Digestive Systems.
Digestive System Jr/Sr Veterinary Science Mrs. Chotkowski #1.
Chapter 19.5-Stomach. Four Regions 1)Cardia 2)Fundus 3)Body 4)Pylorus -Pyloric sphincter CARDIA BODY FUNDUS PYLORUS Pyloric sphincter Rugae of mucosa.
A comparison of the different livestock systems
Digestive System of Animals Animal Science Frameworks Presentation Unit 3.1 Mr. Sullivan.
Animal, Plant & Soil Science Lesson C3-2 Animal Digestion.
Understanding Animal Digestion
Digestive Systems Chris Ellason. Digestion and Absorption: 4 The process of digestion includes: –The prehension of food or feed –The mechanical chewing.
Digestion In a Ruminant, monogastric
Digestive System & Nutrition Chp 14
Comparative Digestive Systems Topic 3024
Pancreatic secretions The pancreas acts as an exocrine gland by producing pancreatic juice which empties into the small intestine via a duct. The pancreas.
Comparative Digestion Systems &Process Modified by Ashlee Gibson.
Chapter 9: digestion.
The Digestive System.  Enzymes are biological catalysts.  They are natural substances, which speed up the breakdown of food substances and other materials.
Digestive System Digestive System, organs for changing food chemically for absorption by body tissues. Digestion involves breaking organic compounds into.
Human Biology: Digestive System
THE HUMAN DIGESTIVE SYSTEM THE CHEMICAL DIGESTION.
Chapter 19: Digestion Chapter overview: –Chapter 19 presents the physiology of digestion and nutrition, including: anatomical views and digestive parts.
ALIMENTARY, MY DEAR WATSON… Digestion as a Process.
The Digestive System Walter J. Taylor Resources Dr. Kehoe, UWRF nutrition course Images from: An Illustrated Guide to veterinary Medical Terminology 3.
CHAPTER 15 DIGESTIVE SYSTEM
Digestion in Animals.
Digestive System Gastrointestinal Tract 1. Mouth Accessory Structures
What happens where? STARCH to MALTOSESALIVARY AMYLASE REACTANT/PRODUCTENZYME PROTEINS to PEPTIDES LIPASE Chymo/trypsin LIPIDS to FAs & GLYCEROL PROTEINS.
DIGESTION.
The Digestive System of Man.
Introduction to the Digestive System
The Digestive System Lab
Physiology of the Digestive System
The Digestive System. Functions Ingestion (eating) Grinding Digestion Absorption of nutrients Elimination of solid wastes.
Digestion in Animals. Digestion Digestion is the chemical decomposition of food into simple substances which the body of cells of an animal can absorb.
Essential Standard 4.00: Understand reproductive and digestive physiology Objective 4.02: Understand digestive physiology.
Digestive System Jeopardy Directions In Jeopardy, remember the answer is in the form of a question. Select a question by clicking on it. After reading.
Veterinary Technology
Digestive System. Humans as Heterotrophs Hetero=another Trophe= nutrition As heterotrophs we cannot create carbon, therefore we need to ingest carbon.
11/18/20151 Daily Food for Thought List the Basic Trace of Food through the Digestive System.
36-2 The Digestive System. Digestive Tract Alimentary canal –one way passage through the body Function: –to convert food into simple molecules that can.
Animal Digestion.
Digestion INGESTION DIGESTION PERISTALSIS ABSORPTION DEFECATION
Alimentary tract. The four main roles of digestive system.
The Digestive System Part II Structures, Functions & Enzymes.
Human digestion. Human digestive system (General plan) Accessory digestive organs.
Animal Nutrition. Digestion 1.Reduce size of food material to increase surface area 2.Kill unwanted microbes 3.Break down macromolecules into subunits.
Gastrointestinal Physiology – Part 2 11/04. Digestive secretions: saliva Functions of saliva in non-ruminants: –Lubricates food to facilitate swallowing.
The Digestive System GR 15 B How Digestion Happens.
Animal, Plant & Soil Science Lesson C3-2 Animal Digestion.
Digestion Digestive Terminology  Digestion- the process of breaking feed down into simple substances that can be absorbed by the body.  Digestive.
Chapter 3. Carbohydrates Mouth Digestion of carbohydrate begins in the mouth, with the secretion of the enzyme salivary amylase from the serous cells.
Animal Digestion.
The Digestive systems of Farm Animals
Gastrointestinal Tracts (ch. 4)
Digestion.
Physiology.
Mechanical vs. Chemical Digestion
Digestive System Miss Ulrich.
Process of digestion Digestion - mechanical & chemical breakdown of food into nutrients Metabolism - chemical reactions breaking down food and releasing.
The digestive system.
Livestock Digestion Objective : Describe the functions of the major parts of the digestive system for ruminants and non-ruminants.
The Digestive System Unit 13.
Human digestion.
Pigs are non-ruminants
Physiology.
digestion – the chemical and mechanical breakdown of food
Presentation transcript:

ANIMAL PHYSIOLOGY: monogastric digestive tract By: Eko Widodo ENTER

Pre-test 1. Write an assay of not less than 300 words on what you know and understand about monogastric digestive physiology (in10 minutes)

 DIGESTIVE SYSTEM + Tonge Teath Salivary gland Liver pancreas ALIMENTARY ORGANS assesorY ORGANS + mouth FEED pharinx Up-take Responsibility oesophagus digestion stomach Small intestines absorption Large intestines cloaca Mouth ~> cloaca

Animals Capacity (l) Stomach Small intestine Cecum Colon rectum Dogs 63 23 1 13 Pigs 29 33 6 32 Horse 9 30 16 45 Cattle 71 18 3 8 Sheep & Goat 67 21 2 10

anatomy

the physiology of digestion and nutrition, including: anatomical views and digestive parts identification the process of digestion and absorption factors affecting digestibility of feeds

Digestion and Absorption: The process of digestion includes: The prehension of food or feed The mechanical chewing and grinding Mixing with digestive acids and enzymes to chemically break down the foodstuffs The process of absorption includes: Transport of the digested foods across the intestinal mucosa to the blood or lymph system

The General Mechanical Process: Mastication - chewing Deglutition - swallowing Regurgitation - movement of digesta in reverse order from the stomach to mouth Defecation - voiding the fecal, or waste, materials from the body

Animal Diet Types: Species may be divided into dietary preference groups: Herbivores consume plant materials, examples are horses and cattle Carnivores consume flesh of other animals, examples are dogs and cats Omnivores consume both plants and flesh, examples include the primates

Differing Digestive Tracts: Farm animal species have a variety of digestive systems Ruminants have four distinct stomach areas examples include bovine, ovine and caprine Nonruminants (also termed monogastrics) display considerable variety hogs, dogs, and cats have a single, simple stomach poultry have a two part stomach horses have a large, functional cecum

Nonruminant Digestive System: Mouth - prehension and chewing of food; some carbohydrate enzyme activity Esophagus - route of food from mouth to stomach Stomach - addition of hydrochloric acid and protein digesting enzymes, mixing and holding

Nonruminant Digestive System: Small intestine - primary site of digestion and absorption Large intestine - major site of water absorption and preparation of digesta for excretion

Nonruminant Variations: Poultry Mouth: no teeth for chewing Esophagus: a “crop” is contained within the esophagus for food holding and moistening Stomach: divided into proventriculus (glandular area) and ventriculus (crushing area) small intestine: primary site for enzymatic digestion Large intestine: short and exiting into the cloaca; two large ceca with limited function

Nonruminant Variations: Horse Large intestine differences: cecum is very large (may contain 50% of digesta) cecum provides some nutrients to the horse via microbial fermentation

Ruminant Digestive System: Many parts of the tract are similar to nonruminant monogastric description Significant differences include: Mouth contains no upper incisors Stomach is divided into four major parts rumen reticulum omasum abomasum

Ruminant Digestive System: Rumen Largest digestive area of the compound stomach Majority of fermentation of feedstuffs occurs here Majority of absorption of byproducts of fermentation - volatile fatty acids or “VFA’s”

Ruminant Digestive System: Reticulum Receives feed from esophagus Initiates mixing, regurgitation, and eructation Environment for fermentation of feedstuffs

Ruminant Digestive System: Omasum Third area of the stomach receives the digesta outflow of the rumen/reticulum Some water absorption and further subdivision of feed particles may occur

Ruminant Digestive System: Abomasum The fourth and final stomach compartment, but very similar in function to the pig stomach Acid and enzyme stomach Final holding and mixing area before the small intestine

Ruminant Digestive System: Selected terms: Regurgitation - controlled reverse movement of coarse feedstuffs from reticulum/rumen via esophagus to mouth for rechewing Eructation - expulsion of accumulated fermentation gases from rumen via esophagus Rumination - refers to the processing of feedstuffs in the reticulum/rumen, to include fermentation, regurgitation, eructation

Chemistry of Digestion: Digestion involves enzymes and acids produced by the host animal or microbes working in symbiosis with the host Enzymes break specific chemical bonds in feeds Domestic animals produce enzymes to digest nonfibrous carbohydrates, fats, and proteins Only microbes have enzyme systems to digest fibrous carbohydrates, such as cellulose

Digestion of Carbohydrates: General carbohydrate digesting enzyme (amylase) in the mouth begins digestion; little amylase is found in horses and none in ruminants Carbohydrate digesting enzymes (amylase) from the pancreas, and intestinal mucosa (sucrase, maltase, lactase) complete carbohydrate digestion

Digestion of Proteins: Protein digesting enzyme (pepsin) and hydrochloric acid in the stomach begin significant digestion Protein digesting enzymes (e.g. trypsin) from the pancreas and intestinal mucosa complete digestion in the small intestine Young nursing animals – rennin coagulates milk allowing more complete digestion

Digestion of Fat: Fat digesting enzyme (lipase) in the stomach begins digestion Fat digesting enzymes from the pancreas (lipase) and intestinal mucosa complete digestion in the small intestine To assist in fat digestion, bile from the liver emulsifies fat into smaller droplets in the small intestine

Factors Affecting Digestibility: Rate of passage - in general, increased rate of passage of digesta through the tract reduces digestibility, factors increasing rate of passage include: Increased level of feeding/intake (ruminants) Finer processing (such as grinding) of feed Note: grinding grain usually increases digestibility but grinding hay decreases digestibility

stomach Divided into cardia (entrance), fundus (body) and pylorus (termination)

Cardiac gland region This is not necessarily in the cardia which is usually non glandular. This mucosa contains glands which produce mucus. Fundic gland region Fundic glands are simple and tubular and contain 3 types of cells: Mucus neck cells, which produce mucus Parietal cells, which produce HCl Peptic or zymogen cells, which produce enzymes

Pyloric gland region These glands are lined entirely with mucus-secreting cells like those within the cardiac glands. The hormone gastrin is produced by G cells of the pyloric gland. Gastric juice Is the total secretory product (fluid) from the surface epithelial cells and the cardiac, fundic and pyloric glands of the stomach. It is colourless and is made up of two components; a parietal cell acid component, and an alkaline component containing pepsin, mucin and electrolytes.

Pepsin Is synthesised in the peptic cells from the inactive precursor, pepsinogen. It begins the digestion of protein in the stomach if the pH is acid. Proteins are converted to proteoses and peptones in the stomach, and digestion of protein Is completed in the intestine.

Rennin Is a milk clotting enzyme secreted as inactive prorennin which Is activated by the presence of acid. In adition to clotting milk rennin also exhibits proteolytic properties. It is foundin the gastric juices of calves, lambs, and young pigs.

Gastic lipase Is present in low concentration in the gastric juice of carnivores. It can hydrolyse fats that are emulsified, such as milk fat but probably had little effect on unemulsified fats.

Hydrochloric acid Is produced by the parietal cells of the fundic glands of the stomach of all vetebrates. HCl activates pepsin and rennin and aids pepsin in protein digestion by lowering the pH of the stomach contents.

Phases of gastric juice secretion Cephalic phase Presence of food in the mouth may result in the secretion of gastric juice in the stomach. Gastric phase When food reaches the stomach, gastric juice secretion Increases for a period up to several hours.

Intestinal phase When products of gastric digestion reach the duodenum, intestinal gastrin is produced.

Pancreas and pancreatic secretion The pancreas consists of exocrine and endocrine portions. The exocrine part consists of acini responsible for the production of pancreatic juice and ducts which convey the juice to the duodenum. The endocrine portion is made up of the Islets of langerhans which secrete insulin into the bloodstream.

Pancreatic juice is secreted under the influence of two hormones produced In the mucosa of the duodenum. Secretin increases the rate of flow and hydrocarbonate concentration of the pancreatic juice. Pancreozymin increases the amount of enzymes In the pancreatic juice. An additional factor which results in a pancreatic juice rich in enzymes Is neurogenic stimulation by the vagus nerve.

Pancreatic juice contains sodium carbonate, which neutralises acid from the stomach and Increases alkalinity of intestinal fluid, and a number of enzymes for the hydrolisis of proteins, fats and carbohydrates.

There are 3 major group of enzymes In pancreatic juice. Pancreatic proteases or proteolitic enzymes in the pancreas are trypsin, chymotrypsin A, chymotrypsin B, and the carboxypeptidases. Pancreatic amylase is an αamylase, probably structurally identical to salivary amylase secreted in an active state. Amylase attacks starch grains and produces dextrins and maltose. Maltase is also present in pancreatic juice and it hydrolyses maltose to glucose.

Pancreatic lipase is secreted in an active form and it hydrolyses fats into carboxylic (fatty) acids and glycerol. Pancreatic lipase is most effective after the fats have been emulsified by bile. Bile is a greenish yellow liquid consisting largely of water, bile salts, bile pigments and cholesterol with smaller amount of fats and inorganic salts.

Intestinal secretion Intestinal juice, called succus entericus, is produced by the intestinal glands scattered throughout the entire small intestine, and submucosal duodenal glands. Secretion of these glands is stimulated by the presence of food in the intestine. The release of intestinal juice Is also brought about by hormone called enterocrinin.

In addition to water, salts and mucus, a number of enzymes have been described In the intestinal juice. These include enterokinase (which activates trypsinogen), and the following inverting enzymes: Maltase - hydrolyses maltose to glucose Sucrase - sucrose to glucose and levulose Lactase - lactose to glucose and galactose Peptidase - peptides to amino acids Polynucleotidase - splits nucleic acids into mononucleotides Nucleotidase - nucleotide into nucleosides and phosphoric acid Nucleosidase - hydrolyses nucleosides

prehension deglutition The manner in which food is grasped. Picked up, carried to the mouth, mixed with saliva and manipulated before swallowing deglutition The process in which food particles are swallowed whole and pass to the crop

Passage of ingesta through the tract Rate The rate of feed passage through the alimentary canal is influenced by the consistency, hardness and water content of the feed and by the amount consumed.

Factors Affecting Digestibility: Rate of passage - in general, increased rate of passage of digesta through the tract reduces digestibility, factors increasing rate of passage include: Increased level of feeding/intake (ruminants) Finer processing (such as grinding) of feed Note: grinding grain usually increases digestibility but grinding hay decreases digestibility

Motility Crop and esophagus Proventriculus Gizzard Small intestine Large intestine

Thank you