Thermal evolution of flares observed by PROBA2/LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC) COSPAR 39 th.

Slides:



Advertisements
Similar presentations
Temporal and Frequency Variations of Flares observed by LYRA onboard of PROBA2 B. Foing (1), D. Vagg(2), M. Dominique(3),
Advertisements

RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Early EVE Observations and Flare First Results Frank Eparvier, EVE Project Scientist University of Colorado – LASP
Solar flare studies with the LYRA - instrument onboard PROBA2 Marie Dominique, ROB Supervisor: G. Lapenta Local supervisor: A. Zhukov.
LYRA on-board PROBA2: instrument performances and latest results M. Dominique (1), I. Dammasch (1), M. Kretzschmar (1,2) (1) Royal Observatory of Belgium.
Impact of the Particle Environment on LYRA Data M. Dominique, A. BenMoussa, M.Kruglanski, L. Dolla, I. Dammasch, M. Kretzschmar PROBA2 workshop, May 04.
LYRA status update M. Dominique and I. Dammasch ESWW9, Brussels 2012.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO.
Temporal Separation of AIA 131 Å and GOES 1-8 Å Peak Flux in Solar Flares Daniel Herman Reed College ‘15 Advisors: Dr. Kathy Reeves & Dr. Trae Winter 8/14/2014.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
1 G. Cessateur, T. Dudok de Wit, M. Kretzschmar, L. Vieira LPC2E, University of Orléans, France J. Lilensten LPG, University of Grenoble, France New Models.
The EUV spectral irradiance of the Sun from minimum to maximum Giulio Del Zanna Department of Space and Climate Physics University College London Vincenzo.
RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)
Institutes Royal Observatory of Belgium (Brussels, BE) Principal Investigator, overall design, onboard software specification, science operations PMOD/WRC.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
PROBA2 a Space Weather Monitor Matthew J West ESWW10 - Nov 2013.
Solar Irradiance Observations with LYRA on PROBA2 I. E. Dammasch, M. Dominique, J.-F. Hochedez & the LYRA Team X th Hvar Astrophysical Colloquium Hvar,
LYRA on-board PROBA2 EUV irradiance inter-calibration workshop M. Dominique + LYRA team October 2011, LASP.
First Results on Solar Irradiance Variability from PROBA2/LYRA/SWAP R. Kariyappa (guest investigator), S. T. Kumar, M. Dominique, D. Berghmans, L. Dame,
LYRA Status PROBA2 workshop February 2011 M. Dominique + LYRA team.
Five years of EUV solar irradiance evolution, from short to long timescales as observed by PROBA2/LYRA I.E. Dammasch, M. Dominique, L. Wauters, A. Katsiyannis,
 ESA’s “PRoject for On-Board Autonomy”  Belgian microsatellite in Sun-synchronous orbit  725 km altitude  Launched 02 Nov 2009  Nominal operations.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Werner Schmutz, PMOD/WRC Status of the space weather experiments LYRA/PROBA2 and PREMOS/PICARD PMOD/WRC COST 724 project: Short-term variability.
LYRA occultations Meeting 2011/05/05. LYRA: Occultations Lyman α Herzberg Aluminum Zirconium EUVUV Vis (IR ?) Lyman α: very sensitive to Visible and InfraRed.
LYRA Calibration using TIMED and SORCE I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation of EUV Instruments.
Degradation of LYRA on PROBA2 after two years in orbit I. E. Dammasch STCE Workshop Brussels, 03 May 2012 LYRA the Large-Yield Radiometer onboard PROBA2.
- “Level” refers to the long-term irradiance, measured as the significant daily minimum, i.e. without flares or instrumental artefacts. - “Variance” refers.
First Results from the LYRA Solar UV Radiometer J.-F. Hochedez, I. E. Dammasch, M. Dominique & the LYRA Team COSPAR 38 th Scientific Assembly Bremen
ESWW4, Brussels, Novembre 2006 Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes: A review of theories, models.
Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes Jean Lilensten (LPG, Grenoble) Thierry Dudok de Wit (LPCE, Orléans)
LYRA Calibration DRB Meeting ESTEC 15 June 2007 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
Correlation between sunspot numbers and EUV irradiance as observed by LYRA on PROBA2 Ingolf. E. Dammasch & Laure Lefevre, ROB SIDC Seminar, Brussels, 10.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
Vida Žigman, UNG, Nova Gorica,Slovenia ESWW10 Antwerp, November 2013 Modelling flare induced ionization enhancements of the lower ionosphere with.
LYRA Science Data Products Forthcoming Abstract The satellite PROBA2, built in Belgium and to be launched this summer, is an ESA micro-mission for the.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
Prediction of solar flares on the basis of correlation with long-term irradiance and sunspot levels Ingolf E. Dammasch, Marie Dominique (ROB) SIDC Seminar,
LYRA Calibration, Data Products, Plans I. E. Dammasch, ROB/SIDC PROBA2 Science Meeting Sun 360, Kiel, Jul 2011 LYRA the Large-Yield Radiometer onboard.
Modeling the UV/EUV and its relevance for PROBA2 observations Margit Haberreiter Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center,
Status of SORCE and LASP EUV Missions M. Snow T. Woods, J. Harder University of Colorado/LASP
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA on PROBA2 I. E. Dammasch¹, M. Dominique¹, M. Kretzschmar¹, P. C. Chamberlin².
LYRA Instrumental Effects T. Katsiyannis & M. Dominique on behalf of the LYRA team.
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC)
Status of PREMOS data SOLID Workshop 14th October 2013 G. Cessateur for the PREMOS team PMOD/WRC, Switzerland.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Two years of solar observation with PROBA2/LYRA: An overview I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), XII th Hvar Astrophysical Colloquium.
LYRA calibration considering the evolution of dark currents I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation.
LYRA Calibration Status I. E. Dammasch, ROB/SIDC PROBA2 Science Working Team Meeting ROB, Brussels, Belgium, 24 Jun 2013 LYRA the Large-Yield Radiometer.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
AMS Meeting, January 2008J1.3. Eparvier - 1 EXIS: The Next Generation of Solar EUV and X-Ray Sensors for GOES-R + F.G. Eparvier, T.N. Woods, W. McClintock,
LYRA Tests and Selections SCSL Meeting Bern 29 Nov - 01 Dec 2006 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
Science and Space Weather Opportunities for PROBA2 M. Dominique STCE meeting, May
Mid-term Periodicities of the LYRA data spectrum
M. Dominique, I.E. Dammasch, L. Wauters, T. Kastiyannis
LYRA Tests and Calibration
in-orbit operations and achievements
Combining SWAP and LYRA observations
the Lyman-alpha Radiometer onboard PROBA-2
Swiss contributions to ILWS 13. 6
Synergies between solar UV radiometry and imaging
High-cadence Radio Observations of an EIT Wave
Configuration and Tests
The GOES EUVS Model: New Operational Spectral Irradiances from GOES-R
Solar EUV Irradiance Monitoring beyond SDO-EVE: GOES EXIS Preliminary Measurements and Validation F.G. Eparvier, A.R. Jones, T.N. Woods, M. Snow, E.M.B.
Presentation transcript:

Thermal evolution of flares observed by PROBA2/LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC) COSPAR 39 th Scientific Assembly Mysore, India, July th TIGER Symposium LYRA the Large-Yield Radiometer onboard PROBA2

LYRA: the Large-Yield RAdiometer 3 instrument units (redundancy) 4 spectral channels per head 3 types of detectors, Silicon + 2 types of diamond detectors (MSM, PIN): - radiation resistant - insensitive to visible light compared to Si detectors High cadence up to 100 Hz

SWAP and LYRA spectral intervals for solar flares, space weather, and aeronomy LYRA channel 1: the H I nm Lyman-alpha line ( nm) LYRA channel 2: the nm Herzberg continuum range (now nm) LYRA channel 3: the nm Aluminium filter range incl the He II 30.4 nm line (+ <5nm X-ray) LYRA channel 4: the 6-20 nm Zirconium filter range with highest solar variablility (+ <2nm X-ray) SWAP: the range around 17.4 nm including coronal lines like Fe IX and Fe X

LYRA spectral response

LYRA data products: GOES vs. LYRA proxies

LYRA data products: Flare List

Example: M1.1 flare, 28 Feb 2011 start to rise at same time parallel in impulsive phase GOES peaks earlier LYRA decreases slower linear factor in pure flare irradiance

Lyman-alpha signal LYRA in early 2010 signal peaks in rising phase log(T)<6

0.03 MK 0.7 MK 1.4 MK 3.7 MK 7.7 MK SOHO/SUMER

Flare components ch2-3 = SXR+EUV “SXR”: emission with log(T)>7 “EUV residual”: emission with 6<log(T)<7 “little bump”: emission with log(T)<6 Compare with SDO/EVE:

Thermal evolution plot based on: solar spectra observed by SDO/EVE contribution functions from the CHIANTI atomic database (Chamberlin, Milligan & Woods, Solar Physics 279, 23-42, 2012)

Problem: LYRA degradation nominal unit 2 (days), spare unit 3 (hours)

Spectral degradation after 200 days in space Experience from SOVA (1992/93) and LYRA (2010/11) combined (“molecular contamination on the first optical surface … caused by UV-induced polymerization”)

C8.7 thermal evolution with LYRA unit 2 Unit 2 has degraded more than unit 3 Identical residuals for Al and Zr channels “Cool” component peaks 19 minutes later than “hot” component

Reminder: LYRA spectral response channel 2-3: Aluminium filter, nominally 17-80nm channel 2-4: Zirconium filter, nominally 6-20nm pre-launch calibration at BESSY additional SXR components <5 nm, <2 nm for comparison: GOES nm

C8.7 thermal evolution with LYRA unit 3 Unit 3 has degraded less than unit 2 Slightly different residuals for Al and Zr channels “Cool” component peaks 22 or 19 minutes later than “hot” component

LYRA-GOES vs. SDO/EVE (C8.7) Corresponding temporal structures can be observed at various temperature levels..

M6.7 thermal evolution with LYRA unit 2 Unit 2 has degraded more than unit 3 Identical residuals for Al and Zr channels “Cool” component peaks 5 minutes later than “hot” component

M6.7 thermal evolution with LYRA unit 3 Unit 3 has degraded less than unit 2 Slightly different residuals for Al and Zr channels “Cool” component peaks 6 or 5 minutes later than “hot” component

LYRA-GOES vs. SDO/EVE (M6.7) Again, corresponding temporal structures can be observed at various temperature levels.

Conclusions Not the right person to tell you what this means as consequences for the thermosphere, the ionosphere, the geosphere. Eventually, LYRA and GOES together may be able to tell you something about the thermal evolution of flares… … with high temporal resolution, and without being full-blown spectrographs. Or, for future missions: How to get max information with min suitable components? Of course, we are still working on the radiometric calibration, together with our colleagues from SDO/EVE. So far, the shapes look similar, but we still have to attach the correct mW/m² to the curves. See you next time around