Atmospheric Circulation Pressure Distributions

Slides:



Advertisements
Similar presentations
Part 3. Distribution and Movement of Air
Advertisements

Wind and Weather.
The General Circulation of the Atmosphere
Introduction to Oceanography
Unit 9: Circulation Patterns of the Atmosphere
Chapter 13 The Atmosphere in Motion
Visualizing Physical Geography Copyright © 2008 John Wiley and Sons Publishers Inc. Chapter 5 Winds and Global Circulation.
Visualizing Physical Geography Copyright © 2008 John Wiley and Sons Publishers Inc. Chapter 5 Winds and Global Circulation Visualizing Physical Geography.
How Does Air Move Around the Globe?
Class #7: Thursday, July 15 Global wind systems Chapter 10 1Class #7, Thursday, July 15, 2010.
Chapter 19. © Air pressure weight of air above © Exerted in all directions (up, down, and sideways)
Global Winds Review.
Zonally Averaged Wind Zonal DJFZonal JJA Meridional JJA.
Outline Further Reading: Chapter 07 of the text book - Surface Winds on an Ideal Earth - Subtropical High-Pressure Belts - Wind and Pressure Features at.
Atmospheric Circulation
Chapter 7 “Circulation of the Atmosphere”
1 Valley Breeze Example ©1997 Prentice-Hall, Inc..
PRESSURE, WINDS AND CIRCULATION PATTERNS
EARTH SCIENCE Air Pressure and Wind.
General Atmospheric Circulation
Unit 2: Climate Winds and Climate
Class #13 Monday, September 27, 2010 Class #13: Monday, September 27 Chapter 7 Global Winds 1.
General Circulation & Thermal Wind
Air Pressure and Wind Pgs. D52-D61.
Chapter 7: Atmospheric Circulations
GEOG 1112: Weather and Climate
The major wind systems.
Earth’s Climate. Examine pages 456 and 457 in your text. From the data presented in the images and you knowledge of air movement, the atmosphere, and.
Earth's Atmosphere Troposphere- the layer closest to Earth's surface extending roughly 16 km (10 miles) above Earth. Densest – N, O, & water vapor Stratosphere-
Global and Local Winds.
Weather and Climate Lecture 4 Winds and Global Circulation II
Chapter 7 Circulation of the Atmosphere A Synoptic-scale Event.
Guided Notes for Weather Systems
The Atmosphere in Motion Chapter 18
GY205 Weather and Climate Lecture 4. Atmospheric Stability Atmospheric Stability Reviewed.
ESS 111 – Climate & Global Change
Global Wind Patterns.
Welcome to Class Define radiation, convection, and conduction.
The General Circulation of the Atmosphere and Oceans ATS 351 Lecture 9 November 2, 2009.
GEU 0027: Meteorology Lecture 10 Wind: Global Systems.
The Atmosphere in Motion
 Air pressure › Pressure exerted by the weight of air above › Exerted in all directions › One of the most basic weather elements › Important factor in.
Types of Winds caused by different things… BUT always blowing from high pressure to low pressure areas remember hotter (and more humid) air rises creating.
Wind & Climate Wind – the horizontal movement of air. Low pressure – warm air rising. High pressure – cold air falling. Winds always blow from high pressure.
Convection Regions, Global Winds, Jet Streams. Atmospheric Convection Regions Since earth is unevenly heated, climate zones occur (different convection.
Do Now: Analyze the following images
How Does Air Move Around the Globe?
Atmospheric Motion Nonrotating Earth Equator – Warming and rising of air – Rising air cools as it ascends – Surface winds blow towards equator to replace.
© 2007, John Wiley and Sons, Inc. Physical Geography by Alan Arbogast Chapter 6 Atmospheric Pressure, Wind, & Global Circulation Lawrence McGlinn Department.
Air Pressure & Wind. Air Pressure Pressure exerted by weight of air above At sea level it as on average 1kg of air per square centimeter Air pressure.
The Atmosphere in Motion
Understanding Air Pressure
Welcome to Class Define radiation, convection, and conduction.
Climate Section 1 Section 1: Factors That Affect Climate Preview Key Ideas Temperature and Precipitation Latitude Heat Absorption and Release Topography.
19 Chapter 19 Air Pressure and Wind. Air Pressure Defined 19.1 Understanding Air Pressure  Air pressure is the pressure exerted by the weight of air.
Class #17 Monday, February 16, Class #17: Monday, February 16 Surface pressure and winds Vertical motions Jet streams aloft.
Chapter 26 Modern Earth Science
Weather Basics Air Pressure and Winds. Air Pressure Air has a mass and exerts a force called atmospheric pressure Air pressure is measured in millibars.
CLIMATECLIMATE: CLIMATE A region’s long-term AVERAGE WEATHER conditions (usually based on data from the previous 30 years) Defined by two factors: TEMPERATURE.
Wind. Air moves in response to density imbalances created by the unequal heating and cooling of Earth’s surface. State of the Atmosphere These imbalances,
Atmospheric Circulation. Winds on a Non-Rotating Earth Air at the equator warms and rises. Once aloft, air flows back towards the poles where it cools.
Discussion Review 4/3 AOSC 200 Sarah Benish. Outline I. Local Wind Systems II. Global Winds III. Atmosphere-Ocean Interactions.
Wind.
19.1.
Focus Question 13.1 Describe the operating principles of the mercury barometer and the aneroid barometer. 2.
Air Movement List the properties of the air currents within a convection cell. Describe how high and low pressure cells create local winds and explain.
Chapter 10 Wind: Global Systems.
Atmospheric Circulation
Air Pressure and Winds Earth Science Ch. 19.
Presentation transcript:

Atmospheric Circulation Pressure Distributions Chapter 8 Atmospheric Circulation and Pressure Distributions

those moving north-to-south or south-to-north are called meridional. George Hadley (1685-1768) proposed a simple circulation pattern called the single-cell model to describe the general movement of the atmosphere. In the single-cell model, air expands upward, diverges toward the poles, descends, and flows back toward the equator near the surface. Winds blowing east-to-west or west-to-east are referred to as zonal winds; those moving north-to-south or south-to-north are called meridional.

divides the circulation of each hemisphere into three distinct cells: The three-cell model divides the circulation of each hemisphere into three distinct cells: the heat-driven Hadley cell that circulates air between the Tropics and subtropics, a Ferrel cell in the middle latitudes, and a polar cell.

diverge toward the poles, creating a zone of low pressure at the Along the equator, strong solar heating causes air to expand upward and diverge toward the poles, creating a zone of low pressure at the equator called the equatorial low or the Intertropical Convergence Zone. The ITCZ is the rainiest latitude zone in the world and is observable as the band of convective clouds and showers extending from northern South America into the Pacific on this satellite image.

At about 20° to 30° latitude, air in the Hadley cell sinks toward the surface to form the subtropical highs, large bands of high surface pressure. Cloud formation is greatly suppressed and desert conditions are common in the subtropics. In the Northern Hemisphere, as the pressure gradient force directs surface air from the subtropical highs to the ITCZ, the weak Coriolis force deflects the air slightly to the right to form the northeast trade winds. In the Southern Hemisphere, the northward-moving air from the subtropical high is deflected to the left to create the southeast trade winds.

Immediately flanking the Hadley cell in each hemisphere is the Ferrel cell, which circulates air between the subtropical highs and the subpolar lows, or areas of low pressure. On the equatorial side of the Ferrel cell, air flowing poleward away from the Northern Hemisphere subtropical high undergoes a substantial deflection to the right, creating a wind belt called the westerlies. In the Southern Hemisphere, the pressure gradient force propels the air southward, but the Coriolis force deflects it to the left, producing a zone of westerlies in that hemisphere as well.

In the polar cells of the three-cell model, surface air moves from the polar highs to the subpolar lows. Compared to the poles, air at subpolar locations is slightly warmer, resulting in low surface pressure and rising air. Very cold conditions at the poles create high surface pressure and low-level motion toward the equator. In both hemispheres, the Coriolis force turns the air to form a zone of polar easterlies in the lower atmosphere.

of high and low pressure. Among the most prominent features in the The real world is not covered by a series of belts that completely encircle the globe. Instead, we find a number of alternating semi-permanent cells of high and low pressure. Among the most prominent features in the Northern Hemisphere during winter are the Aleutian and Icelandic Lows over the Pacific and Atlantic Oceans, and the Siberian High over central Asia.

In summer, the best-developed semi-permanent cells are the Hawaiian and Bermuda-Azores Highs of the Pacific and Atlantic Oceans and the Tibetan Low of southern Asia.

the ITCZ is located south of the Sahel, and the region The Sahel is a region of Africa bordering the southern Sahara Desert. During the summer (left), the ITCZ usually shifts northward and brings rain to the region. For much of the year, the ITCZ is located south of the Sahel, and the region receives little or no precipitation (right).

Wind speeds generally increase with height between the surface and the tropopause largely because pressure gradient force is typically stronger at high altitudes. The surfaces representing the 900, 800, and 700 mb levels all slant downward to the north, but not by the same amount. Higher surfaces slope more steeply, which means that the pressure gradient force is greater.

The polar front is a strongly sloping boundary between warm mid-latitude air and cold polar air. Within the front, the slope of the pressure surfaces increases greatly because of the abrupt horizontal change in temperature. With steeply sloping pressure surfaces there is a strong pressure gradient force, resulting in the polar jet stream situated above the polar front near the tropopause.

Jet streams can be thought of as meandering “rivers” of air, usually 9 to 12 km above sea level. Their wind speeds average about 180 km/hr in winter and about half that in summer, though peak winds can exceed twice these values. Nearer the equator is the subtropical jet stream, associated with the Hadley cell. The subtropical jet stream can bring with it warm, humid conditions as seen above.

This hypothetical drawing of the 500 mb surface reveals that heights decrease from south to north but also rise and fall through the ridges and troughs. Vertical changes are highly exaggerated in the figure. Actual height changes are small compared to the size of the continent.

of the continent is a trough. Troughs occur in the middle troposphere where the 500 mb height contours dip equatorward. In the top map, positions 1–3 have the 500 mb level at 5610 m. Farther to the south, at positions 4–6, the 500 mb level is at 5640 m. In the bottom map, contour lines are in the same position over the East and West Coasts as they were up top, but shift equatorward over the central portion of the continent. Thus, positions 2 and 5 have lower pressure than the areas east and west of them. The zone of lower pressure over the central part of the continent is a trough.

There are anywhere from three to seven Rossby waves or long waves circling the globe, each with a particular wavelength and amplitude. Rossby waves often remain in fixed positions, but also migrate west to east and are capable of transporting warm air from subtropical regions to high latitudes, or cold polar air to low latitudes.

of Canada fed by the East and West Greenland Drift. Ocean currents are horizontal movements of surface water that have an impact on the exchange of energy and moisture between the oceans and the lower atmosphere. Among these are the North Equatorial Current and the South Equatorial Current, which converge, creating the Equatorial Countercurrent. The warm Gulf Stream flows northeast to become the North Atlantic Drift and later the cold Canary Current as it turns southward. The cold Labrador Current flows south along the east coast of Canada fed by the East and West Greenland Drift.

Ocean currents are driven by winds in the lower atmosphere that exert a drag on the water at an angle 45° to the right (Northern Hemisphere) and continue to shift clockwise as their speed decreases. At a depth of about 100 m, the current approaches the opposite direction of the surface current and begins to die out in a pattern known as the Ekman spiral.

Strong offshore winds along a coastal region sometimes drag the warmer surface waters seaward, which draws up cooler waters from below to take their place. This process, called upwelling, greatly influences sea surface temperatures over the eastern portions of the major oceans.

Features such as the Intertropical Convergence Zone, the westerlies, and large Rossby waves exist on a global scale. Smaller features, such as cyclones, anticyclones, troughs, and ridges, exist at the synoptic scale, covering hundreds or thousands of square kilometers. Mesoscale events are on the order of tens of square kilometers and last for periods as brief as half an hour. The smallest exchanges of mass and energy operate at the microscale.

cause heavy rains over the southern part of the continent. Monsoon refers to the climatic pattern in which heavy precipitation alternates with hot, dry conditions on an annual basis due to the seasonal reversal in surface winds caused by an oscillation between high- and low-pressure cells. During winter (top), dry air flows southward from the Himalayas. When summer arrives (bottom) moist air is drawn northward from the equatorial oceans. Surface heating, convergence, and a strong orographic effect cause heavy rains over the southern part of the continent.

Foehn is the generic name for synoptic scale winds that flow down mountain slopes, warm by compression, and introduce hot, dry, and clear conditions to the adjacent lowlands. Winds warmed by compression that descend the eastern slopes of the Rocky Mountains are called chinooks. The Santa Ana winds of California, common in the fall and spring, occur when high pressure develops over the Rocky Mountains. Katabatic winds originate when air is locally chilled over a high- elevation plateau and warmed by compression as it flows down slope.

Along the coast during the daytime, land surfaces warm more rapidly than the adjacent water (a), which causes the air column overlying the land to expand and rise upward (b). At a height of about 1 km, the rising air spreads outward (c), which causes an overall reduction in the surface air pressure. Over the adjacent water less warming takes place, so the air pressure is greater than that over land. The air over the water moves toward the low-pressure area over the land, which sets up the daytime sea breeze. At night the land surface cools more rapidly than the water. The air over the land becomes dense and generates a land breeze.

A valley breeze (a) forms when daytime heating causes the mountain surface to become warmer than nearby air at the same altitude. The air expands upward and the air flows from the valley to replace it. Nocturnal cooling makes the air dense over the mountain and initiates a mountain breeze (b).

El Niño is a recurrent event in the tropical eastern Pacific in which sea-surface temperatures are significantly above normal. La Niña is the inverse event (cold sea-surface temperatures). The Walker circulation is an east-west circulation pattern of the Tropics, characterized by several cells of rising and sinking air connected by horizontal motions along parallel lines of latitude. The Southern Oscillation is the reversal of surface pressure patterns over the tropical Pacific associated with El Niño events. The Pacific Decadal Oscillation is an alternating pattern of sea surface temperature in the Pacific that reverses over several decades.

The next chapter examines air masses and fronts.