Issues in GPS Error Analysis What are the sources of the errors ? How much of the error can we remove by better modeling ? Do we have enough information.

Slides:



Advertisements
Similar presentations
Principles of the Global Positioning System Lecture 12 Prof. Thomas Herring Room A;
Advertisements

2006 AGU Fall Meeting. 14 Dec. 2006, San Francisco – Poster #G43A-0985 Jim Ray (NOAA/NGS), Tonie van Dam (U. Luxembourg), Zuheir Altamimi (IGN), Xavier.
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue | A | Cambridge MA V F.
Seasonal Position Variations and Regional Reference Frame Realization Jeff Freymueller Geophysical Institute University of Alaska Fairbanks.
Effect of Surface Loading on Regional Reference Frame Realization Hans-Peter Plag Nevada Bureau of Mines and Geology and Seismological Laboratory University.
Survey-mode measurements and analysis M. Floyd K. Palamartchouk Massachusetts Institute of Technology Newcastle University GAMIT-GLOBK course University.
Effects of azimuthal multipath heterogeneity and hardware changes on GPS coordinate time series Sibylle Goebell, Matt King
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
“Real-time” Transient Detection Algorithms Dr. Kang Hyeun Ji, Thomas Herring MIT.
GAMIT Modeling Aspects Lecture 04 Thomas Herring
GAMIT Modeling Aspects Lecture 04 Thomas Herring
M. Floyd K. Palamartchouk
SOPAC's Instantaneous Global Plate Motion Model: Yehuda Bock, Linette Prawirodirdjo, Peng Fang, Paul Jamason, Shimon Wdowinski (TAU, UMiami) Scripps Orbit.
Principles of the Global Positioning System Lecture 10 Prof. Thomas Herring Room A;
Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring Room A;
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
Error analysis T. A. Herring R. W. King M. A. Floyd Massachusetts Institute of Technology GPS Data Processing and Analysis with GAMIT/GLOBK/TRACK UNAVCO.
Chapter 8: The future geodetic reference frames Thomas Herring, Hans-Peter Plag, Jim Ray, Zuheir Altamimi.
Background to >10 years of BIFROST activities Jan M. Johansson 1, Hans-Georg Scherneck 1, Rüdiger Haas 1, Sten Bergstrand 1 Martin Lidberg 1,2, Lotti Jivall.
Modern Navigation Thomas Herring
Uncertainty in Uncertainty. Within a factor of 2.
An improved and extended GPS derived velocity field of the postglacial adjustment in Fennoscandia Martin Lidberg 1,3, Jan M. Johansson 1, Hans-Georg Scherneck.
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue | Cambridge MA V F
GPS: “Where goeth thou” Thomas Herring With results from Jen Alltop: Geosystems Thesis Katy Quinn: Almost graduated Ph.D
SNARF: Theory and Practice, and Implications Thomas Herring Department of Earth Atmospheric and Planetary Sciences, MIT
Testing intraplate deformation in the North American plate interior E. Calais (Purdue Univ.), C. DeMets (U. Wisc.), J.M. Nocquet (Oxford and IGN) ● Is.
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue | Cambridge MA V F
Workshops for Establishing a Stable North American Reference Frame (SNARF) to Enable Geophysical and Geodetic Studies with EarthScope: Annual Report
Earth Sciences Sector SLIDE 1 NAREF & CBN Velocity Solutions for a New Version of SNARF Mike Craymer Joe Henton Mike Piraszewski 8th SNARF Workshop AGU.
Assessment of Reference Frame Stability trough offset detection in GPS coordinate time series Dragan Blagojević 1), Goran Todorović 2), Violeta Vasilić.
Propagation of Error Ch En 475 Unit Operations. Quantifying variables (i.e. answering a question with a number) 1. Directly measure the variable. - referred.
Modern Navigation Thomas Herring MW 11:00-12:30 Room
Reference Frames Global Center of Mass ~ 30 mm ITRF ~ 2 mm, < 1 mm/yr Continental < 1 mm/yr horiz., 2 mm/yr vert. Local -- may be self-defined.
Issues in GPS Error Analysis What are the sources of the errors ? How much of the error can we remove by better modeling ? Do we have enough information.
Error Models Lecture 06 Thomas Herring
Reference Frame Theory & Practice: Implications for SNARF SNARF Workshop 1/27/04 Geoff Blewitt University of Nevada, Reno.
Application of a North America reference frame to the Pacific Northwest Geodetic Array (PANGA) M M Miller, V M Santillan, Geodesy Laboratory, Central Washington.
Principles of the Global Positioning System Lecture 12 Prof. Thomas Herring Room ;
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue | Cambridge MA V F
Challenges and Opportunities in GPS Vertical Measurements “One-sided” geometry increases vertical uncertainties relative to horizontal (~3:1) so longer.
Short-session Static and Kinematic Processing Short-session static: GAMIT processing, sessions 1-3 hours long Kinematic: TRACK processing, coordinates.
Survey-mode measurements and analysis T. A. Herring R.W. King M. A. Floyd Massachusetts Institute of Technology GPS Data Processing and Analysis with GAMIT/GLOBK/TRACK.
Error Modeling Thomas Herring Room ;
5/18/2994G21D-04 Spring AGU Realization of a Stable North America Reference Frame Thomas Herring Department of Earth Atmospheric and Planetary, Sciences,
Are thermal effects responsible for micron-level motions recorded at deep- and shallow-braced monuments in a short-baseline network at Yucca Mountain,
Assessing the GIA Contribution to SNARF Mark Tamisiea and Jim Davis Harvard-Smithsonian Center for Astrophysics.
Principles of the Global Positioning System Lecture 09 Prof. Thomas Herring Room A;
Challenges and Opportunities in GPS Vertical Measurements “One-sided” geometry increases vertical uncertainties relative to horizontal and makes the vertical.
Modeling Errors in GPS Vertical Estimates Signal propagation effects –Signal scattering ( antenna phase center/multipath ) –Atmospheric delay ( parameterization,
12/12/01Fall AGU Vertical Reference Frames for Sea Level Monitoring Thomas Herring Department of Earth, Atmosphere and Planetary Sciences
Aug 6, 2002APSG Irkutsk Contemporary Horizontal and Vertical Deformation of the Tien Shan Thomas Herring, Bradford H. Hager, Brendan Meade, Massachusetts.
Issues in GPS Error Analysis What are the sources of the errors ? How much of the error can we remove by better modeling ? Do we have enough information.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Issues in GPS Error Analysis What are the sources of the errors ? How much of the error can we remove by better modeling ? Do we have enough information.
Limits of static processing in a dynamic environment Matt King, Newcastle University, UK.
Reference Frames Global Continental Local -- may be self-defined
Elevation angle and phase residuals for single satellite
Geodesy & Crustal Deformation
Contemporary Horizontal and Vertical Deformation of the Tien Shan
GLOBK Velocity Solutions
Reference Frames Global Continental Local -- may be self-defined
Geodesy & Crustal Deformation
Time series and error analysis
Geodesy & Crustal Deformation
Understanding what sh_gamit does
Elevation angle and phase residuals for single satellite
Investigation of site-dependent GPS errors and monument stability using a short-baseline network of braced monuments Emma Hill, Jim Davis, Pedro Elosegui,
Reference frames in Geodetic Analyses
Principles of the Global Positioning System Lecture 11
by Naoki Uchida, Takeshi Iinuma, Robert M
Presentation transcript:

Issues in GPS Error Analysis What are the sources of the errors ? How much of the error can we remove by better modeling ? Do we have enough information to infer the uncertainties from the data ? What mathematical tools can we use to represent the errors and uncertainties ?

Determining the Uncertainties of GPS Parameter Estimates Rigorous estimate of uncertainties requires full knowledge of the error spectrum—both temporal and spatial correlations (never possible) Sufficient approximations are often available by examining time series (phase and/or position) and reweighting data Whatever the assumed error model and tools used to implement it, external validation is important

Sources of Error Signal propagation effects –Receiver noise –Ionospheric effects –Signal scattering ( antenna phase center / multipath ) –Atmospheric delay (mainly water vapor) Unmodeled motions of the station –Monument instability –Loading of the crust by atmosphere, oceans, and surface water Unmodeled motions of the satellites

Simple geometry for incidence of a direct and reflected signal Multipath contributions to observed phase for an antenna at heights (a) 0.15 m, (b) 0.6 m, and (c ) 1 m. [From Elosegui et al, 1995]

Epochs Hours 20 0 mm -20 Elevation angle and phase residuals for single satellite Characterizing Phase Noise

Characterizing the Noise in Daily Position Estimates Note temporal correlations of days and seasonal terms

Figure 5 from Williams et al [2004]: Power spectrum for common-mode error in the SOPAC regional SCIGN analysis. Lines are best-fit WN + FN models (solid=mean ampl; dashed=MLE) Note lack of taper and misfit for periods > 1 yr Spectral Analysis of the Time Series to Estimate an Error Model

... spectral analysis approach Power law: slope of line fit to spectrum – 0 = white noise –-1 = flicker noise –-2 = random walk Non-integer spectral index (e.g. “fraction white noise”  1 >  > -1 ) Good discussion in Williams [2003] Problems: –Computationally intensive –No model captures reliably the lowest-frequency part of the spectrum

Examples of times series and spectra for global stations From Mao et al., 1999

White noise vs flicker noise from Mao et al. [1999] spectral analysis of 23 global stations Short-cut: Use white noise statistics ( wrms) to predict the flicker noise

“Realistic Sigma” Algorithm for Velocity Uncertainties Motivation: computational efficiency, handle time series with varying lengths and data gaps; obtain a model that can be used in globk Concept: The departure from a white-noise (sqrt n) reduction in noise with averaging provides a measure of correlated noise. Implementation: –Fit the values of chi2 vs averaging time to the exponential function expected for a first-order Gauss-Markov (FOGM) process (amplitude, correlation time) –Use the chi2 value for infinite averaging time predicted from this model to scale the white-noise sigma estimates from the original fit and/or –Fit the values to a FOGM with infinite averaging time (i.e., random walk) and use these estimates as input to globk ( mar_neu command)

Yellow: Daily (raw) Blue: 7-day averages Effect of Averaging on Time-series Noise Note the dominance of correlated errors and unrealistic rate uncertainties with a white noise assumption:.01 mm/yr N,E.04 mm/yr U

Same site, East component ( daily wrms 0.9 mm nrms 0. 5 ) 64-d avg wrms 0.7 mm nrms d avg wrms 0.6 mm nrms d avg wrms 0.3 mm nrms 3.1

Estimating a “realistic-sigma” by fitting an exponential function to chi-square vs averaging time Get scale factor by evaluating the function at an infinite averaging time

Red lines show the 68% probability bounds of the velocity based on the results of applying the algorithm. Using TSVIEW to compute and display the “realistic-sigma” results Note rate uncertainties with the “realistic- sigma” algorithm : 0.09 mm/yr N 0.13 mm/yr E 0.13 mm/yr U

Comparison of estimated velocity uncertainties using spectral analysis (CATS*) and Gauss-Markov fitting of averages (GLOBK) Plot courtesy E. Calais

Velocity Errors due to Seasonal Signals Theoretical analysis of a continuous time series by Blewitt and Lavallee [2002] Top: Bias in velocity from a 1mm sinusoidal signal in-phase and with a 90-degree lag with respect to the start of the data span Bottom: Maximum and rms velocity bias over all phase angles The minimum bias is NOT obtained with continuous data spanning an even number of years The bias becomes small after 3.5 years of observation Annual signals from atmospheric and hydrological loading, monument translation and tilt, and antenna temperature sensitivity are common in GPS time series

Summary of Practical Approaches White noise + flicker noise (+ random walk) to model the spectrum [Williams et al., 2004] White noise as a proxy for flicker noise [Mao et al., 1999] Random walk to model to model an exponential spectrum [Herring “realistic sigma” algorithm for velocities] “Eyeball” white noise + random walk for non-continuous data ______________________________________ Only the last two can be applied in GLOBK for velocity estimation All approaches require common sense and verification

Determining the Uncertainties of GPS Estimates of Station Velocities Understanding the sources of error Time series analysis to determine statistics for reweighting the data Whatever the assumed error model and tools used to implement it, external validation is important

External Validation for Velocity Uncertainties -- assume no strain within a geological rigid block GMT plot at 70% confidence 17 sites in central Macedonia: 4-5 velocities pierce error ellipses

.. same solution plotted with 95% confidence ellipses 1-2 of 17 velocities pierce error ellipses

McCaffrey et al A more rigorous assessment for data from Cascadia Colors show slipping and locked portions of the subducting slab where the surface velocities are highly sensitive to the model; area to the east is slowly deforming and insensitive to the details of the model

Velocities and 70% error ellipses for 300 sites observed by continuous and survey-mode GPS Test area (next slide) is east of 238E

Residuals to elastic block model for 70 sites in slowly deforming region Error ellipses are for 70% confidence: velocities pierce their ellipse

SARG DALL BURN 217U Locations of one continuous (BURN) and 3 survey-mode sites for time series shown in next slides

Time series of monthly position estimates for continuous site BURN Wrms ~ 1 mm N,E ~ 3 mm U Rate uncertainties < 0.2 mm/yr N,E 0.7 mm/yr U do not include random walk added for velocity estimates

SARG DALL BURN 217U Next slide shows time series for survey-mode site 217U Note consistency with nearby sites

Time series for survey-mode site 217U Position estimates based on 8-24 hr occupations Note < 1 mm rate uncertainties due to 7-yr time span

SARG DALL BURN 217U Next slide shows time series for survey-mode site SARG

Horizontal time series for survey-mode site SARG Position estimates based on 8-24 hr occupations Note 1 mm wrms and < 1 mm rate sigmas

SARG DALL BURN 217U Next slide shows time series for survey-mode site DALL Note consistency with nearby sites except continuous site GWEN

Position estimates based on 8-24 hr occupations Rate sigmas < 1 mm/yr and consistent with surrounding sites even with velocities determined essentially by two occupations 3 yrs apart Horizontal time series for survey-mode site DALL

Histogram of Velocity Residuals Distribution of normalized rms for horizontal magnitudes residuals after removing the block model 357 sites NRMS E, N 1.00, 1.03 # NRMS

Cumulative histogram of normalized velocity residuals for Eastern Oregon & Washington ( 70 sites ) Noise added to position for each survey: 0.5 mm random 1.0 mm/sqrt(yr)) random walk Solid line is theoretical for Gaussian distribution Percent Within Ratio Ratio (velocity magnitude/uncertainty) Statistics of Velocity Residuals

Ratio (velocity magnitude/uncertainty) Percent Within Ratio Same as last slide but with a smaller random-walk noise added : 0.5 mm random 0.5 mm/yr random walk ( vs 1.0 mm/sqrt(yr)) RW for ‘best’ noise model ) Note greater number of residuals in range of sigma Statistics of Velocity Residuals

Percent Within Ratio Same as last slide but with larger random and random-walk noise added : 2.0 mm white noise 1.5 mm/sqrt(yr)) random walk ( vs 0.5 mm WN and 1.0 mm/sqrt(yr)) RW for ‘best’ noise model ) Note smaller number of residuals in all ranges above 0.1-sigma Ratio (velocity magnitude/uncertainty) Statistics of Velocity Residuals

Summary All algorithms for computing estimates of standard deviations have various problems: Fundamentally, rate standard deviations are dependent on low frequency part of noise spectrum which is poorly determined. Assumptions of stationarity are often not valid “Realistic sigma” algorithm is a covenient and reliable appraoch to getting velocity uncertainties in globk Velocity residuals from a model, together with their uncertainties, can be used to validate the error model

Tools for Error Analysis in GAMIT/GLOBK GAMIT: AUTCLN reweight = Y (default) uses phase rms from postfit edit to reweight data with constant + elevation-dependent terms GLOBK -- rename ( eq_file ) _XPS or _XCL to remove outliers –sig_neu adds white noise by station and span; useful for handling outliers –mar_neu adds random-walk noise: principal method for controlling velocity uncertainties –In the gdl files, can rescale variances of an entire h-file: useful when combining solutions from with different sampling rates or from different programs (Bernese, GIPSY) Utilities –Realistic sigma” algorithm implemented in tsview (MATLAB) and enfit/ensum; sh_gen_stats generates mar_neu commands for globk based on the noise estimates –sh_plotve l (GMT) allows setting of confidence level of error ellipses –sh_tshist and sh_velhist can be used to generate histograms of time series and velocities

References Spectral Analysis Langbein and Johnson [J. Geophys. Res., 102, 591, 1997] Zhang et al. [J. Geophys. Res., 102, 18035, 1997] Mao et al. [J. Geophys. Res., 104, 2797, 1999] Dixon et al. [Tectonics, 19, 1, 2000] Herring [GPS Solutions, 7, 194, 2003] Williams [J. Geodesy, 76, 483, 2003] Williams et al. [J. Geophys. Res. 109, B03412, 2004] Langbein [J. Geophys. Res., 113, B05405, 2008] Williams, S. [GPS Solutions, 12, 147, 2008] Effect of seasonal terms on velocity estimates Blewitt and Lavaellee [J. Geophys. Res. 107, 2001JB000570, 2002] Realistic Sigma Algorithm Herring [GPS Solutions, 7, 194, 2003] Reilinger et al. [J. Geophys. Res., 111, B5, 2006] Validation in velocity fields McClusky et al. [J. Geophys. Res. 105, 5695, 2000] McClusky et al. [Geophys. Res. Lett., 28, 3369, 2000] Davis et al. [J. Geophys. Res. Lett. 2003GL016961, 2003] McCaffrey et al., [Geophys J. Int., , 2007]

Reference frames in Geodetic Analyses Two aspects Theoretical (e.g., rigid block, mantle-fixed, no-net-rotation of plates) Realization through a set of coordinates and velocities Three considerations in data processing and analysis Consistent with GPS orbits and EOP (NNR) -- not an issue if network small or if orbits and EOP estimated Physically meaningful frame in which to visualize site motions Robust realization for velocities and/or time series

Velocity Bias vs Data Span for Real Data RMS difference in velocity for 23 stations of a global network : shorter spans compared with 3.5 years Annual amplitude range 0.3 – 4.4 mm horizontal (rms 1.5 mm) 1.1 – 10.3 mm vertical (rms 4 mm) Blewitt and Lavallee [2002]