1 Introduction to Vortices in Superconductors Pre-IVW 10 Tutorial Sessions, Jan. 2005, TIFR, Mumbai, India Pre-IVW 10 Tutorial Sessions, Jan. 2005, TIFR,

Slides:



Advertisements
Similar presentations
Superconductors. Gor’kov and Eliashberg found the time- dependent G-L equations using microscopic theory: These equations are solved numerically Model.
Advertisements

Two Major Open Physics Issues in RF Superconductivity H. Padamsee & J
High T c Superconductors in Magnetic Fields T. P. Devereaux.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
1 Most of the type II superconductors are anisotropic. In extreme cases of layered high Tc materials like BSCCO the anisotropy is so large that the material.
Dislocation Structures: Grain Boundaries and Cell Walls Dislocations organize into patterns Copper crystal l- ectors_corner/vft/mi4a.htm.
“… at each new level of complexity, entirely new properties appear, and the understanding of this behavior requires research which I think is as fundamental.
RF Superconductivity and the Superheating Field H sh James P. Sethna, Gianluigi Catelani, and Mark Transtrum Superconducting RF cavity Lower losses Limited.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
1 A. Derivation of GL equations macroscopic magnetic field Several standard definitions: -Field of “external” currents -magnetization -free energy II.
Semiconductors n D*n If T>0
1 L.D. Landau ( 1937 ) A second order phase transition is generally well described phenomenologically if one identifies: a). The order parameter field.
The Three Hallmarks of Superconductivity
Beyond Zero Resistance – Phenomenology of Superconductivity Nicholas P. Breznay SASS Seminar – Happy 50 th ! SLAC April 29, 2009.
Interactions Reference books: Quantum mechanics: - Mathews: Introduction to Quantum Mechanics - Cohen-Tannoudji, Diu and Laloë: Mécanique Quantique Statistical.
Vortex Dynamics in Type II Superconductors Yuri V. Artemov Yuri V. Artemov Ph.D. Student in Physics Brian B. Schwartz Mentor: Brian B. Schwartz Professor.
Qiang Gu (顾 强) Cold atoms in the synthetic magnetic field Department of Physics, University of Science and Technology Beijing (北京科技大学 物理系) KITPC, Beijing,
Superconductors: Basic Concepts Daniel Shantsev AMCS group Department of Physics University of Oslo History Superconducting materials Properties Understanding.
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Exciting New Insights into Strongly Correlated Oxides with Advanced Computing: Solving a Microscopic Model for High Temperature Superconductivity T. Maier,
Superconductivity III: Theoretical Understanding Physics 355.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
How does Superconductivity Work? Thomas A. Maier.
Y. Tanaka Nagoya University, Japan Y. Asano Hokkaido University, Japan Y. Tanuma Akita University, Japan Alexander Golubov Twente University, The Netherlands.
Prof. Harvinder Kaur Govt College for Girls. Outline  Introduction  Mechanism of Superconductors  Meissner Effect  Type I and Type II superconductors.
Type I and Type II superconductivity
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Michael Browne 11/26/2007.
Superfluid 3He in aerogel I.A. Fomin, P.L. Kapitza Institute for Physical Problems, Moscow. XV INTERNATIONAL SUMMER SCHOOL NICOLÁS CABRERA 100 YEARS LIQUID.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
History of superconductivity
START. What’s “SUPER” about SUPERCONDUCTORS? Clarina R. dela Cruz High Pressure and Low Temperature Laboratory Texas Center for Superconductivity University.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Lecture IV Bose-Einstein condensate Superfluidity New trends.
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
P. M. Grant Superconductivity 101 Superconductivity Workshop Charlotte, 24 May 1999 Superconductivity 101 A Primer for Engineers Paul M. Grant
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
SUPERCONDUCTORS mobile electrons in conducting material move through lattice of atoms or ions that vibrate (thermal motion) when conductor is cooled down.
Delay times in chiral ensembles— signatures of chaotic scattering from Majorana zero modes Henning Schomerus Lancaster University Bielefeld, 12 December.
E. Todesco, Milano Bicocca January-February 2016 Unit 5 Elements of superconductivity Ezio Todesco European Organization for Nuclear Research (CERN) Based.
Subir Sachdev Superfluids and their vortices Talk online:
Gregory Gabadadze (NYU, CCPP) with R. A. Rosen, JCAP, JHEP 08,09 D. Pirtskhalava, JCAP 09.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Superconductivity and Superfluidity The Pippard coherence length In 1953 Sir Brian Pippard considered 1. N/S boundaries have positive surface energy 2.
FFLO and pair density wave superconductors 1- General motivation for studying PDW phases 2- Microscopic PDW mechanism in superconductors without parity.
Chapter 7 in the textbook Introduction and Survey Current density:
Superconductivity: approaching the century jubilee A.A.Varlamov Institute of Superconductivity and Innovative Materials SPIN-CNR, Italy.
Superconductivity Basics
Muons in condensed matter research Tom Lancaster Durham University, UK.
WHAT IS SUPERCONDUCTIVITY?? For some materials, the resistivity vanishes at some low temperature: they become superconducting. Superconductivity is the.
Superconductivity M.C. Chang Dept of Phys Introduction Thermal properties specific heat, entropy, free energy Magnetic properties critical field, critical.
Ginzburg-Landau-Abrikosov Theory of Type II Superconductors - Phase diagram of vortex matter 李定平 北京大学物理学院理论物理研究所 , 台湾,台北 在Hc2附近, 可假設 B是constant.
COCKCROFT INSTITUTE, DARESBURY
Electrical resistance
Spontaneous Symmetry Breaking and Analogies to the Higgs-Mechanism
PHY 752 Solid State Physics
Electrical Properties of Materials
Experimental Evidences on Spin-Charge Separation
Theoretical Work On Superconductivity Up to 1956* A.J. Leggett
100 YEARS of SUPERCONDUCTIVITY: ANCIENT HISTORY AND CURRENT CHALLENGES
Shanghai Jiao Tong University
“fixed” object (phonon)
Efrain J. Ferrer Paramagnetism in Compact Stars
High Temperature Superconductivity
Special Topics in Electrodynamics:
Special Topics in Electrodynamics:
Ginzburg-Landau theory
Presentation transcript:

1 Introduction to Vortices in Superconductors Pre-IVW 10 Tutorial Sessions, Jan. 2005, TIFR, Mumbai, India Pre-IVW 10 Tutorial Sessions, Jan. 2005, TIFR, Mumbai, India Thomas Nattermann University of Cologne Germany GermanyOutline: 1.Mean field theory 2.Thermal fluctuations 3.Disorder 4.Miscellaneous Reviews: Blatter et al., Rev. Mod. Phys. 1994; Brandt, Rep. Progr. Phys. 1995; Nattermann and Scheidl,, Adv. Phys Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

2 17th century vortex physics vortices …whatever was the manner whereby matter was first set in motion, the vortices into which it is divided must be so disposed that each turns in the direction in which it is easiest to continue its movement for, in accordance with the laws of nature, a moving body is easily deflected by meeting another body… I hope that posterity will judge me kindly, not only as to the things which I have explained, but also to those which I have intentionally omitted so as to leave to others the pleasure of discovery. Rene Descartes 1644 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

3 Superconductivity as a true thermodynamic phase Ideal conductor (Kammerling Onnes 1911) Ideal diamagnet (Meissner-Ochsenfeld 1933) Hg <  Superconductivity: true thermodynamic phase Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

4 9.5 K 0.66 K 0.61 K 0.40 K K K K 7.2 K Niobium (Nb) Osmium (Os) Zirconium (Zr) Titanium (Ti) Iridium (Ir) Tungsten (W) Rhodium (Rh) Lead (Pb) Carbon (C) Lead (Pb) Mercury (Hg) Tin (Sn) Indium (In) Aluminum (Al) Gallium (Ga) Zinc (Zn) 15 K K 4.15 K 3.72 K 3.41 K K K 0.85 K 17.5 K K 23.2 K Nb 3 Al Nb 3 Sn Nb 3 Ge Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

5 Time-line of Superconductors JG Bednorz, KA Müller Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

6 Fritz and Heinz London 1935 Superconductivity = Long Range Order of Momentum perfect conductor + perfect diamagnet perfect conductor + perfect diamagnet = superconductor F. London 1950 Fluxoid conservation and quantization Problem : interface energy negative Extension: anisotropy, non-locality London penetration depth Surface current screens bulk r£r£ B= - r 2 B = -2 B Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

7 Ginzburg and Landau 1950 Superconducting order parameter  T)»(T-T c0 ) correlation length: Superconductivity = broken U(1) symmetry (ODLRO, Penrose, Onsager ´51, ´56) Extensions: several order parameters (e.g. s+d-wave) ~ |   | ¢ |   |, Extensions: several order parameters (e.g. s+d-wave) ~ |D   | ¢ |D   |, anisotropy |D  2  | 2,.. anisotropy |D  2  | 2,.. = - i (e * /hc) A, D= r - i (e * /hc) A, Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

8 Bardeen Cooper Schrieffer 1957 attractive Cooper pair formation (bound state of 2 electrons) electron phonon interaction: very short rangedstrong in s-wave (l=0) channel Symmetry of pairs of identical electrons: orbitalspin wave function totally antisymmetric under particle exchange even parity: l= 0,2,4,…, S=0 singlet evenodd odd parity: l= 1,3,5,…, S=1 triplet oddeven ) e * =2e Sigrist, Zuoz 2004 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

9 Conventional superconductivity Order parameter structureless complex condensate wave function Microscopic origin: Coherent state of Cooper pairs Bardeen-Cooper-Schrieffer (1957) violation of U(1)-gauge symmetry Conventional  k =  independent of k pairs of electrons diametral on Fermi surface; vanishing total momentum Sigrist, Zuoz 2004 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

10 Rescaling:  =  -1 » effective charge Parameters of Ginzburg-Landau-Theory  ~ - H GL / T    ~ e - H GL / T Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

11 Mean-field Theory no screening symmetric gauge A = H(-y/2, x/2,0) For decreasing field 1st solution E n=0 =1 at H = H c,2 (T) = 2 1/2  H c (T)  n,m  n,m Quantum particle in magnetic field ! Landau levels E n Nattermann, pre-IV10 Tutorial Sessions, TIFR Mumnai 2005

12 Abrikosov 1957 Abrikosov 1957: Lowest Landau Level Approximation: n=0 only magnetic flux penetrates SC if Convenient: Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

13 quantifized flux penetrates superconductor for Abrikosov 1957 Energy per unit length: Vortex interaction Low field H ¼ H c1 : exist single vortex solution of GL-equations ~ quantized flux tube Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

14 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

15 London Approximation Apply r£ on 2nd GL-equation ) Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

16 B0B0 -4πM HcHc B0B0 H c1 H c2 Vortex state Normal state Superconducting state Normal state Type I Type II H < H c M H < H c1 M H c1 < H < H c2 Vortex Type-I and Type-II Superconductivity Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

17 form triangular lattice ´´broken translational invariance´´ Many vortices: Loss of perfect diamagnetism. Bitter decoration Abrikosov Lattice Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

18 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

19 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005 Vortices in rotating Bose-Einstein Condensates

20 Crab nebula (Hubble space telescope) Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005 Vortices in Neutronstars

21 Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

22 Center of Crab nebula: rotating neutron star with vortices in its superfluid core vortices in its superfluid core Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005 Vortices in Neutronstars

23 Glitches = sudden increase of rotation frequency due to depinning of vortices from outer crust Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005 Vortices in Neutronstars

24 Elasticity Theory: Brandt 1977 Vortex lines:positions Distortion from ideal positions Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

25 Pardo et al., PRL (1997) Hexagonal Abrikosov lattice, fragile, susceptible to plastic deformation for H close to H c1 and H c2 small distortionsfrom perfect order: Elasticity theory, ´´soft matter´´ Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

26 Dislocations in the vortex lattice entanglement  screw dislocations screw dislocation loop loss of translational order,  edge dislocations topological line defect, charge = Burgers vector b planarity constraint: dislocations cannot climb out of b-H plane (no "vortex ends") mobile dislocations  r>0Kierfeld Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005

27 Single Dislocation dislocation=directed stiff line characteristic energy/length core energy stiffness core energy long-range elastic strains ~1/r bending energy Kierfeld Nattermann, pre-IVW10 Tutorial Sessions, TIFR Mumbai 2005