P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct. 2010 Slide 1 Improved search for the neutron electric dipole moment Philipp Schmidt –Wellenburg.

Slides:



Advertisements
Similar presentations
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Institut de Physique Nucléaire d'Orsay.
Advertisements

LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Andreas Knecht1ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 A Gravitational Spectrometer for Ultracold Neutrons Andreas Knecht Paul Scherrer Institut.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Electric dipole moment searches
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
1 Test of fundamental symmetries Sumerian, 2600 B.C. (British Museum) With thanks to Antoine Weis from an atomic physics perspective Mike Tarbutt.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Lepton Moments 2014 Craigville 07/22/2014 P. Schmidt-Wellenburg PSI Searching for the electric dipole moment of the neutron.
Study of the Time-Reversal Violation with neutrons
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
Searching for a nEDM at PSI
UCN optics, polarization foils and spinflipper for the munich nEDM approach Thorsten Lauer.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Electric Dipole Moment of Neutron and Neutrinos
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Villigen, Status of the nEDM measurement Progress 2011 PSI Proposal R–05–03.1 Philipp Schmidt-Wellenburg on behalf of the nEDM collaboration.
Magnetic/Electric Fields for KEK-RCNP EDM Experiment K. Matsuta(Osaka), Y. Masuda(KEK), Y. Watanabe(KEK), S.C. Jeong(KEK), K. Hatanaka(RCNP), R. Matsumiya.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
The nEDM experiment at PSI 1 Guillaume Pignol (LPSC Grenoble) IN2P3 scientific council, 24/10/2013.
ER01/JA01, th Session of the JINR Scientific Council Dubna, March 27, 2006 Participation of JINR scientists in joint experiments at Paul Scherrer.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
 Lori Rebenitsch University of Winnipeg June 17,
Measuring the Electron EDM Using Ytterbium Fluoride (YbF) Molecules
Yannis K. Semertzidis Brookhaven National Laboratory Seminar IUCF, 21 May 2004 EDMs: Why are they important? Our Universe: The Symmetry that isn’t EDM.
CP-Violation and Baryon Asymmetry in Universe Electric Dipole Moments of Fundamental Particles Yannis K. Semertzidis Brookhaven National Lab Colloquium.
Yannis K. Semertzidis Brookhaven National Laboratory Seminar KVI, 1 July 2004 EDMs: Why are they important? Our Universe: The Symmetry that isn’t EDM Experimental.
4-quark operator contributions to neutron electric dipole moment Haipeng An, University of Maryland; PHENO 2009 In collaboration with Xiangdong Ji, Fanrong.
June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole.
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
Electric-Dipole Moment Searches * Philip Harris *(mainly neutron)
Particle Physics with Slow Neutrons II LNGS Summer Institute, September 2005Torsten Soldner Lecture II: Neutrons beyond the SM Motivation Right-handed.
, Providence RI Paul Scherrer Institut Philipp Schmidt-Wellenburg on behalf of the nEDM collaboration An improved search of the nEDM.
Ramsey Spectroscopy: Search for e- Dipole Moment
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
The cryogenic neutron EDM experiment at ILL Technical challenges and solutions James Karamath University of Sussex.
SUSY Baryogenesis, EDMs, & Dark Matter: A Systematic Approach M.J. Ramsey-Musolf V. CiriglianoCaltech C. LeeINT S. TulinCaltech S. ProfumoCaltech PRD 71:
Electric Dipole Moment Searches in Nuclei, Atoms, and Molecules Dave Kawall - RIKEN BNL Research Center and UMass D S RBRC Symposium, BNL, June 19th, 2006.
1/30Peter FierlingerStanford, Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
Neutron and electron EDMs PPAP meeting, Birmingham, 18 th September 2012 Mike Tarbutt Centre for Cold Matter, Imperial College London.
Environment of the nEDM experiment at PSI Jochen Krempel Institute for Particle Physics ETH Zürich , Ascona1.
Florian Piegsa – nnbar at ESS – June 13 th Florian Piegsa ETH Zürich – Institute for Particle Physics Magnetometry – nnbar at ESS.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Philip Harris EDM Experiments PPAP, Birmingham 15/7/09.
Ultra-Cold Neutron Group in Kellogg Lab - Neutron Electric Dipole Moment (EDM) Experiment - Search for new CP violation - Neutron Decay - Precision measurements.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
Chris Parkes University of Manchester Part VI Concluding Remarks 1)Other flavour physics / CPV searches 2)Overall Constraints on CKM Triangle.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Electric Dipole Moments PPAP community meeting 2015
ICNPF 2013, Crete, Aug. 28 – Sept. 5, 2013 JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings | H. Ströher.
Neutron and electron electric dipole moments
The status of the search for a nEDM and the new UCN sources
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
A new simultaneous spin analyser (USSA) for the PSI nEDM experiment
University of Manchester
Electric Dipole Moments: Searches at Storage Rings
Accelerator R&D and Particle Physics at PSI
Electric Dipole Moments: Searches at Storage Rings
I Alexander Nass for the JEDI collaboration
Search for Electric Dipole Moments: The JEDI-Project at Jülich
electric dipole moments (EDM)
Decay Angular Measurement in the MEG Experiment
Presentation transcript:

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 1 Improved search for the neutron electric dipole moment Philipp Schmidt –Wellenburg on behalf of the nEDM collaboration Improved search for the neutron electric dipole moment Philipp Schmidt –Wellenburg on behalf of the nEDM collaboration

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 2 Baryon asymmetry We live in a material world There is no evidence of Antimatter; Where has it gone? Sakharov criteria 1.Baryon number violation 2.C and CP violation 3.Thermal non-equilibrium vs. SM expectation: Observed: 10 ~    n B nn B

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 3 P Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau T Symmetries and EDM

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 4 P Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau T Symmetries and EDM A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP.

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 5 CP-odd sources fundamental CP-odd phases Energy dede TeV QCD nuclear atomic d q , d q’, d q’,w g  NN nEDM qq/qe interaction EDM of Tl (paramagnetic) EDM of Hg (diamagnetic) e-N interaction Adapted from: A. Ritz, NIMA 611 (2009) 117

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 6 nEDM is a test of flavor diagonal CP (so far CP only appeared in of diagonal elements of the CKM Matrix) ―background free search for new physics CP violation of the neutron contribute to: – explaining baryogenesis problem (Sakharov criteria) – magical fine adjustment of QCD θ-term (θ < ) – confining SUSY (MSSM) parameter space complementary to high energy physics (LHC) The role of an neutron EDM M.J. Ramsey-Musolf, NIMA 611 (2009) 111

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 7 ++ < 1μm A brief history of nEDM searches RAL-Sussex-ILL d n < 2.9 x 10 –26 e cm C.A.Baker et al., PRL 97 (2006) Smith, Purcell, Ramsey d n < 5 x 10 –20 e cm PR 108 (1957) 120 FirstLast ~ 50 years Aimed at sensitivities at PSI: Intermediate: d n < 5 x e cm (95% C.L.) Final: d n < 5 x e cm (95% C.L.)

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 8 The measurement principle Measure the difference of precession frequencies for parallel/anti-parallel fields: for d n <  ω < 60 nHz

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 9 The Ramsey technique Free precession at ω L Apply  /2 spin flip pulse... “Spin up” neutron... Second  /2 spin flip pulse. The Ramsey technique of separated oscillating fields B 0↑ B 0↑ + B rf B 0↑ B 0↑ + B rf Ramsey resonance curve Sensitivity:  Visibility of resonance EElectric field strength TTime of free precession NNumber of neutrons

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 10 Ultracold neutrons (UCN) storable neutrons (UCN) V E. Fermi, 1946, Ya. B. Zeldovich Sov. Phys. JETP 9, 1389 (1959) storage properties are material dependent 350 neV ↔ 8 m/s ↔ 500 Å ↔ 3 mK magnetic  60 neV/T magnetic  60 neV/T gravity 102 neV/m gravity 102 neV/m strong V F strong V F

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 11 PSI UCN source Protons Spallation target E n ~MeV D 2 O moderator Neutrons thermalized to 25 meV 1m Neutron shutter UCN storage volume Neutron guide to experiments UCN density: 1000/cm 3 UCN convertor (solid D 2 )

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 12 nn Source commissioning started fall 2009 nEDM setting up since middle of 2009 Full proton beam (590 MeV, 2.2 mA, 1% duty cycle e.g. 8s/800s) nEDM PSI UCN beamline

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 13 RAL – Sussex – ILL apparatus on loan ILL (phase I) PSI (phase II)

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 14 Apparatus 5T magnet to spin polarize UCNs Switch to distribute the UCNs to different parts of the apparatus Spin analyzer Neutron detector Precession chamber where neutrons precesses Vacuum chamber Magnetic field coils B 0 -correction coils Electrode (upper) High voltage lead E B E~12 kV/cm B=1  T

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 15 Measuring frequencies with UCN Sensitivity: changing polarity every ~ 400 s comparing frequency +/- polarity aimed at sensitivity  ω  60 nHz 50 pT

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 16 Monitoring of B-field drifts Mercury lamp (readout mercury) Hg polarizing system Photomultiplier tube read mercury light (UV) Precession chamber where mercury precesses 4-layer Mu-metal shield shields experiment from external magnetic fields Magnetic field coils B 0 -correction coils Electrode (upper) Cesium magnetometer + Active B-field compensation (surrounding field compensation SFC)

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 17 Corrected measurement Corrected with Hg magentometer 50 pT A Cesium magnetometer area will allow measure field gradients

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 18 Sensitivities and magnetic stability Cesium (ILL) Mercury (ILL) Cesium (PSI) w SFC Steps to increase magnetic stability 1.Stability of the magnetic shield Degaussing Thermal effects Mechanical effects 2.Surrounding field compensation (SFC) 3.Replacement of metals Non-metal electrodes Plastic shutters (Hg and neutron) Allan standard deviation of magnetic field

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 19 Known systematic effects Effect Shift (see Ref.) [ e cm] σ (see Ref.) [ e cm] σ (at PSI) [ e cm] Door cavity dipole Other dipole fields Quadrupole difference v  E translational v  E rotational Second-order v  E Hg light shift (geo phase) Hg light shift (direct) Uncompensated B drift Hg atom EDM Electric forces Leakage currents ac fields Total PRL 97, (2006) After 2 years, statistics & systematics d n = 0: |d n | < 5 x e cm (95% C.L.) or, e.g., d n = 1.3 x e cm (5σ)

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 20 n2EDM shield – conceptual study Phase III d n < 5 x e cm (95% C.L.)

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 21 Conclusion The apparatus was successfully moved from ILL to the Paul Scherrer Institut The stability of the magnetic situation is being improved to profit in full scale of the increased UCN density The study and control of systematic effects has improved compared to the original experiment First neutrons will be welcomed end of year, the spectrometer will be ready Ready for neutrons

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 22 also at: 1 Paul Scherrer Institut, 2 PNPI Gatchina The Neutron EDM Collaboration M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms G. Ban, Th. Lefort, Y. Lemiere, E. Pierre, G. Quéméner K. Bodek, St. Kistryn, J. Zejma A. Kozela N. Khomutov P. Knowles, A.S. Pazgalev, A. Weis P. Fierlinger, B. Franke 1, M. Horras 1, F. Kuchler, G. Petzoldt D. Rebreyend, G. Pignol G. Bison S. Roccia, N. Severijns, N.N. G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl, J. Zenner 1 W. Heil, A. Kraft, Yu. Sobolev 2 I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler Z. Chowdhuri, M. Daum, M. Fertl, R. Henneck, B. Lauss, A. Mtchedlishvili, P. Schmidt-Wellenburg, G. Zsigmond K. Kirch 1, F. Piegsa Physikalisch Technische Bundesanstalt, Berlin Laboratoire de Physique Corpusculaire, Caen Institute of Physics, Jagiellonian University, Cracow Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow Joint Institute of Nuclear Reasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe, Garching Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Biomagnetisches Zentrum, Jena Katholieke Universiteit, Leuven Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz Inst. für Physik, Johannes-Gutenberg-Universität, Mainz Technische Universität, München Paul Scherrer Institut, Villigen Eidgenössische Technische Hochschule, Zürich

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 23 BACKUP

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 24 The nEDM collaboration

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 25 4-layer magnetic shield Moving the shieldMechanical shocks

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 26 Magnetic field requirements Δω = ω  - ω  = 2d n (E  +E  )/ħ + 2μ n (B  -B  )/ħ statistical sensitivity: σ(d n ) ~ 3 × e cm per cycle ( E ↑↑ and E ↑↓ ) ~ 400 s B field requirement: σ(ΔB) ~ 200 fT per Ramsey measurement ( ~ 100 s) Measuring an d n < e cm requires to measure a Δω < 30 nHz !

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 27 Magnetic shocks The apparatus is in the vicinity of several experimental magnets Fast changes of the magnetic field (O( μT)) can lead to irreversible changes of the field seen by neutrons The behavior of these shocks where tested with SFC coils An active surrounding field compensation will minimize this effect  shock -/+ shock + shock Residual shock signal Shield magnetization Irreversible shield magnetization + B [nT]

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 28 The Ramsey method in a double chamber ħ ω/2 = ±μB +d n E E ħ ω/2 = ±μB -d n E B Ramsey method: (e.g. with two parallel chambers) ħ ω/2 = ±μB Δω = ω  - ω  = 2d n (E  +E  )/ħ + 2μ n (B  -B  )/ħΔω = ω  - ω  = 4d n (E )/ħ

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 29 Leakage current 1.Changing the polarity of the high voltage will change the direction of the leakage current, and hence the magnetic field produced by these currents 2.Most contribution of the leakage currents cancel out, not so j φ. jrjr jrjr jφjφ jφjφ jφjφ jzjz Leakage currents are caused by the high voltage and appear along the surface of the insulator ring. A leakage current of 1 nA produces a false edm of 2 × e cm

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 30 Leakage current measurement Current (nA) Time (h) 0.75pA 4 pA FEMTO 1.Monitoring of leakage currents on ground electrode 2.Combination of protection circuit and highly sensitive current/voltage amplifier I Leak (nA) U HV (kV) I Leak ≤ 0.5 nA σ ≤ 0.1 × e cm

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 31 Uncompensated B Drift Experimental tests and improvements 1.Cs magnetometer can measure dipole field 2.Charging current of HV can be adapted σ = 0.9 × e cm

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 32 Electric dipole moment and physics Thallium, YbF Atom/Molekül Niveau CP von Teilchen zu Atomen Kern Niveau NNNN WW Schiff Moment Quecksilber Higgs, SUSY, Left/Right Sarke CP Feldtheorie CP Modell  GG Neutron Nukleon Niveau Elektron/Quark Niveau dqdq ~ dede eN-WW g  NN ++ --

P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 33 PSI UCN production beam line Proton energy: 590 MeV Beam current: 2 mA Power: 1.3 MW Proton energy: 590 MeV Beam current: 2 mA Power: 1.3 MW