Confirmatory factor analysis

Slides:



Advertisements
Similar presentations
Multilevel analysis with EQS. Castello2004 Data is datamlevel.xls, datamlevel.sav, datamlevel.ess.
Advertisements

Structural Equation Modeling. What is SEM Swiss Army Knife of Statistics Can replicate virtually any model from “canned” stats packages (some limitations.
Structural Equation Modeling Using Mplus Chongming Yang Research Support Center FHSS College.
Structural Equation Modeling
BA 275 Quantitative Business Methods
SOC 681 James G. Anderson, PhD
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
Factor Analysis Ulf H. Olsson Professor of Statistics.
1-1 Regression Models  Population Deterministic Regression Model Y i =  0 +  1 X i u Y i only depends on the value of X i and no other factor can affect.
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
Measurement Models and CFA; Chi-square and RMSEA Ulf H. Olsson Professor of Statistics.
Multivariate Data Analysis Chapter 11 - Structural Equation Modeling.
“Ghost Chasing”: Demystifying Latent Variables and SEM
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
Example of EQS with ‘raw data’ Sintaxis generator Method = robust Multiple group Mean and covariances (MACS)
Measurement Models and CFA Ulf H. Olsson Professor of Statistics.
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
G Lecture 51 Estimation details Testing Fit Fit indices Arguing for models.
Factor Analysis Ulf H. Olsson Professor of Statistics.
The General (LISREL) SEM model Ordinal variables p Alternative Fit indices p Error of Approximation p Model modification p
Msam07, Albert Satorra 1 Examples with Coupon data (Bagozzi, 1994)
Factor Analysis Ulf H. Olsson Professor of Statistics.
The General (LISREL) SEM model Ulf H. Olsson Professor of statistics.
Stages in Structural Equation Modeling
MEASUREMENT MODELS. BASIC EQUATION x =  + e x = observed score  = true (latent) score: represents the score that would be obtained over many independent.
Path analysis: Observed variables Much has been written about path analysis; has been around for over 20 years; started in sociology. Usually has been.
Structural Equation Modeling 3 Psy 524 Andrew Ainsworth.
Issues in structural equation modeling Hans Baumgartner Penn State University.
Structural Equation Modeling
Confirmatory Factor Analysis Psych 818 DeShon. Purpose ● Takes factor analysis a few steps further. ● Impose theoretically interesting constraints on.
CJT 765: Structural Equation Modeling Class 7: fitting a model, fit indices, comparingmodels, statistical power.
1 Variable selection for factor analysis and structural equation models Yutaka Kano & Akira Harada Osaka University International Symposium on Structural.
Copyright © 2010 Pearson Education, Inc Chapter Twenty-Two Structural Equation Modeling and Path Analysis.
ROB CRIBBIE QUANTITATIVE METHODS PROGRAM – DEPARTMENT OF PSYCHOLOGY COORDINATOR - STATISTICAL CONSULTING SERVICE COURSE MATERIALS AVAILABLE AT:
Estimation Kline Chapter 7 (skip , appendices)
CJT 765: Structural Equation Modeling Class 8: Confirmatory Factory Analysis.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
1 General Structural Equations (LISREL) Week 1 #4.
Measurement Models: Exploratory and Confirmatory Factor Analysis James G. Anderson, Ph.D. Purdue University.
Assessing Hypothesis Testing Fit Indices
Measures of Fit David A. Kenny January 25, Background Introduction to Measures of Fit.
Multivariate Statistics Confirmatory Factor Analysis I W. M. van der Veld University of Amsterdam.
Measurement Models: Identification and Estimation James G. Anderson, Ph.D. Purdue University.
Assessing Hypothesis Testing Fit Indices Kline Chapter 8 (Stop at 210) Byrne page
CJT 765: Structural Equation Modeling Class 8: Confirmatory Factory Analysis.
Chapter 13.  Both Principle components analysis (PCA) and Exploratory factor analysis (EFA) are used to understand the underlying patterns in the data.
Structural Equation Modeling Mgmt 291 Lecture 3 – CFA and Hybrid Models Oct. 12, 2009.
ALISON BOWLING STRUCTURAL EQUATION MODELLING. WHAT IS SEM? Structural equation modelling is a collection of statistical techniques that allow a set of.
Estimation Kline Chapter 7 (skip , appendices)
Examples. Path Model 1 Simple mediation model. Much of the influence of Family Background (SES) is indirect.
ALISON BOWLING CONFIRMATORY FACTOR ANALYSIS. REVIEW OF EFA Exploratory Factor Analysis (EFA) Explores the data All measured variables are related to every.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
The general structural equation model with latent variates Hans Baumgartner Penn State University.
Demonstration of SEM-based IRT in Mplus
Evaluation of structural equation models Hans Baumgartner Penn State University.
Latent variable path analysis Combination of CFA and observed variable path analysis More parameters estimated, so need to have a larger sample size Chief.
SEM with AMOS1 Christian A. Klöckner. 2 Agenda Expectations What is Structural Equation Modelling? What is AMOS? A simple regression A multiple regression.
Chapter 17 STRUCTURAL EQUATION MODELING. Structural Equation Modeling (SEM)  Relatively new statistical technique used to test theoretical or causal.
The SweSAT Vocabulary (word): understanding of words and concepts. Data Sufficiency (ds): numerical reasoning ability. Reading Comprehension (read): Swedish.
Advanced Statistical Methods: Continuous Variables
Structural Equation Modeling using MPlus
Chapter 15 Confirmatory Factor Analysis
CJT 765: Structural Equation Modeling
Writing about Structural Equation Models
Confirmatory Factor Analysis
General Structural Equation (LISREL) Models
Causal Relationships with measurement error in the data
Factor Analysis.
Testing Causal Hypotheses
Presentation transcript:

Confirmatory factor analysis Hans Baumgartner Penn State University

What’s the structure underlying 28 distinct covariances between 8 observed variables? x1 x2 x3 x4 x5 x6 x7 x8

The exploratory factor model xq q11 d q22 q33 q44 q55 q66 q77 q88 1 . . . . . . . . . . . . . . .

The confirmatory factor model x1 x2 x3 x4 x5 x6 x7 x8 l11 l41 l21 l31 l52 l82 l62 l72 j21 q11 d q22 q33 q44 q55 q66 q77 q88 1

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

The congeneric factor model x1 x2 x3 x4 x5 x6 x7 x8 l11 l41 l21 l31 l52 l82 l62 l72 j21 q11 d q22 q33 q44 q55 q66 q77 q88 1

Appendix A:

j21 l1 l1 l1 l1 l52 l62 l72 l82 1 1 x1 x2 x1 x2 x3 x4 x5 x6 x7 x8 d1 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l51 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

21= 0 or 1 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d

j21 l1 l1 l1 l1 l52 l62 l72 l82 1 1 x1 x2 x1 x2 x3 x4 x5 x6 x7 x8 d1 q11 q11 q11 q11 q55 d q66 d q77 d q88 d

j21 1 1 x1 x2 l11 l21 l31 l41 l52 l62 l72 l82 x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 d4 d5 d6 d7 d8 q11 d q22 d q33 d q44 d q55 d q66 d q77 d q88 d q51

A MTMM model (Appendix B)

Model identification Setting the scale of the latent variables A necessary condition for identification Two- and three-indicator rules Identification from first principles Empirical identification tests

Identification of a simple model (Appendix C) d1 d2 d3 d4 x1 x2 x3 x4 l11 l21 l32 l42 j21

Identification of a simple model

Model estimation Discrepancy functions: Estimation problems: Unweighted least squares (ULS) Maximum likelihood (ML) Generalized least squares (GLS) Other methods Estimation problems: Nonconvergence Improper solutions

Model testing Global fit measures: Local fit measures: χ2 goodness of fit test Alternative fit indices Local fit measures: Parameter estimates Reliability Discriminant validity Model modification: Modification indices and EPC’s Residuals

Reliability for congeneric measures individual-item reliability (squared correlation between a construct ξj and one of its indicators xi):   ρii = λij2var(ξj)/[ λij2 var(ξj) + θii]   composite reliability (squared correlation between a construct and an unweighted composite of its indicators x = x1 + x2 + ... + xK): ρc = (Σλij)2 var(ξj)/[ (Σλij)2 var(ξj) + Σθii]  average variance extracted (proportion of the total variance in all indicators of a construct accounted for by the construct; see Fornell and Larcker 1981):   ρave = (Σλij2) var(ξj)/[ (Σλij2) var(ξj) + Σθii]  

SIMPLIS specification Title Confirmatory factor model (attitude toward using coupons measured at two points in time) Observed Variables id aa1t1 aa2t1 aa3t1 aa4t1 aa1t2 aa2t2 aa3t2 aa4t2 Raw Data from File=d:\m554\eden\cfa.dat Latent Variables AAT1 AAT2 Sample Size 250 Relationships aa1t1 aa2t1 aa3t1 aa4t1 = AAT1 aa1t2 aa2t2 aa3t2 aa4t2 = AAT2 Set the Variance of AAT1 AAT2 to 1 Options sc rs mi wp End of Problem

Goodness of Fit Statistics: Degrees of Freedom = 19 Minimum Fit Function Chi-Square = 72.98 (P = 0.00) Normal Theory Weighted Least Squares Chi-Square = 67.97 (P = 0.00) Estimated Non-centrality Parameter (NCP) = 48.97 90 Percent Confidence Interval for NCP = (27.51 ; 78.01) Minimum Fit Function Value = 0.29 Population Discrepancy Function Value (F0) = 0.20 90 Percent Confidence Interval for F0 = (0.11 ; 0.31) Root Mean Square Error of Approximation (RMSEA) = 0.10 90 Percent Confidence Interval for RMSEA = (0.076 ; 0.13) P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00073 Expected Cross-Validation Index (ECVI) = 0.41 90 Percent Confidence Interval for ECVI = (0.32 ; 0.53) ECVI for Saturated Model = 0.29 ECVI for Independence Model = 12.05 Chi-Square for Independence Model with 28 Degrees of Freedom = 2983.93 Independence AIC = 2999.93 Model AIC = 101.97 Saturated AIC = 72.00 Independence CAIC = 3036.10 Model CAIC = 178.83 Saturated CAIC = 234.77 Normed Fit Index (NFI) = 0.98 Non-Normed Fit Index (NNFI) = 0.97 Parsimony Normed Fit Index (PNFI) = 0.66 Comparative Fit Index (CFI) = 0.98 Incremental Fit Index (IFI) = 0.98 Relative Fit Index (RFI) = 0.96 Critical N (CN) = 124.47 Root Mean Square Residual (RMR) = 0.055 Standardized RMR = 0.032 Goodness of Fit Index (GFI) = 0.94 Adjusted Goodness of Fit Index (AGFI) = 0.88 Parsimony Goodness of Fit Index (PGFI) = 0.49

Measurement Equations: aa1t1 = 1.10*AAT1, Errorvar.= 0.65 , R2 = 0.65 (0.073) (0.070) 15.02 9.23 aa2t1 = 1.10*AAT1, Errorvar.= 0.50 , R2 = 0.71 (0.069) (0.058) 16.06 8.60 aa3t1 = 0.94*AAT1, Errorvar.= 0.74 , R2 = 0.54 (0.071) (0.074) 13.18 9.94 aa4t1 = 1.21*AAT1, Errorvar.= 0.56 , R2 = 0.73 (0.074) (0.066) 16.33 8.40 aa1t2 = 1.20*AAT2, Errorvar.= 0.55 , R2 = 0.72 (0.073) (0.061) 16.43 8.92 aa2t2 = 1.16*AAT2, Errorvar.= 0.41 , R2 = 0.77 (0.068) (0.049) 17.23 8.33 aa3t2 = 0.99*AAT2, Errorvar.= 0.55 , R2 = 0.64 (0.066) (0.056) 14.95 9.65 aa4t2 = 1.23*AAT2, Errorvar.= 0.49 , R2 = 0.76 (0.072) (0.057) 17.04 8.49

Correlation Matrix of Independent Variables (AVE)½ [. 81] [ Correlation Matrix of Independent Variables (AVE)½ [.81] [.85] AAT1 AAT2 -------- -------- [.81] AAT1 1.00 [.85] AAT2 0.90 1.00 (0.02) 45.14

Standardized Residuals aa1t1 aa2t1 aa3t1 aa4t1 aa1t2 aa2t2 aa3t2 aa4t2 -------- -------- -------- -------- -------- -------- -------- -------- aa1t1 - - aa2t1 -0.57 - - aa3t1 0.53 -0.52 - - aa4t1 -0.20 2.07 -1.58 - - aa1t2 3.84 2.17 0.00 -0.90 - - aa2t2 -1.13 0.16 -0.14 -1.16 -0.49 - - aa3t2 -1.26 -1.89 4.90 0.81 -1.63 0.26 - - aa4t2 -0.74 -2.71 -0.10 0.41 -0.45 1.42 0.71 - -

Modification Indices and Expected Change Modification Indices for LAMBDA-X AAT1 AAT2 -------- -------- aa1t1 - - 0.11 aa2t1 - - 1.19 aa3t1 - - 2.48 aa4t1 - - 0.30 aa1t2 5.94 - - aa2t2 1.46 - - aa3t2 0.37 - - aa4t2 2.78 - -

Modification Indices for THETA-DELTA aa1t1 aa2t1 aa3t1 aa4t1 aa1t2 aa2t2 aa3t2 aa4t2 -------- -------- -------- -------- -------- -------- -------- -------- aa1t1 - - aa2t1 0.32 - - aa3t1 0.28 0.27 - - aa4t1 0.04 4.28 2.49 - - aa1t2 16.26 5.45 2.37 4.97 - - aa2t2 1.66 1.83 0.57 0.65 0.24 - - aa3t2 4.06 6.09 27.88 0.95 2.67 0.07 - - aa4t2 0.30 6.31 0.27 2.77 0.20 2.02 0.51 - -

Title Confirmatory factor model (attitude toward using coupons measured at two points in time) Observed Variables id aa1t1 aa2t1 aa3t1 aa4t1 aa1t2 aa2t2 aa3t2 aa4t2 Raw Data from File=d:\m554\eden2\cfa.dat Latent Variables AAT1 AAT2 Sample Size 250 Relationships aa1t1 aa2t1 aa3t1 aa4t1 = AAT1 aa1t2 aa2t2 aa3t2 aa4t2 = AAT2 Set the Variance of AAT1 AAT2 to 1 Set the Error Covariance of aa1t1 and aa1t2 free Set the Error Covariance of aa2t1 and aa2t2 free Set the Error Covariance of aa3t1 and aa3t2 free Set the Error Covariance of aa4t1 and aa4t2 free Options sc rs mi wp Path Diagram End of Problem

Goodness of Fit Statistics:   Degrees of Freedom = 15 Minimum Fit Function Chi-Square = 26.76 (P = 0.031) Normal Theory Weighted Least Squares Chi-Square = 26.28 (P = 0.035) Estimated Non-centrality Parameter (NCP) = 11.28 90 Percent Confidence Interval for NCP = (0.78 ; 29.60) Minimum Fit Function Value = 0.11 Population Discrepancy Function Value (F0) = 0.045 90 Percent Confidence Interval for F0 = (0.0031 ; 0.12) Root Mean Square Error of Approximation (RMSEA) = 0.055 90 Percent Confidence Interval for RMSEA = (0.014 ; 0.089) P-Value for Test of Close Fit (RMSEA < 0.05) = 0.37 Expected Cross-Validation Index (ECVI) = 0.27 90 Percent Confidence Interval for ECVI = (0.23 ; 0.35) ECVI for Saturated Model = 0.29 ECVI for Independence Model = 12.05 Chi-Square for Independence Model with 28 Degrees of Freedom = 2983.93 Independence AIC = 2999.93 Model AIC = 68.28 Saturated AIC = 72.00 Independence CAIC = 3036.10 Model CAIC = 163.23 Saturated CAIC = 234.77 Normed Fit Index (NFI) = 0.99 Non-Normed Fit Index (NNFI) = 0.99 Parsimony Normed Fit Index (PNFI) = 0.53 Comparative Fit Index (CFI) = 1.00 Incremental Fit Index (IFI) = 1.00 Relative Fit Index (RFI) = 0.98 Critical N (CN) = 285.55 Root Mean Square Residual (RMR) = 0.031 Standardized RMR = 0.017 Goodness of Fit Index (GFI) = 0.97 Adjusted Goodness of Fit Index (AGFI) = 0.94 Parsimony Goodness of Fit Index (PGFI) = 0.41

Completely Standardized Solution   LAMBDA-X AAT1 AAT2 -------- -------- aa1t1 0.80 - - aa2t1 0.85 - - aa3t1 0.73 - - aa4t1 0.86 - - aa1t2 - - 0.85 aa2t2 - - 0.88 aa3t2 - - 0.79 aa4t2 - - 0.87 PHI AAT1 1.00 AAT2 0.89 1.00 THETA-DELTA aa1t1 aa2t1 aa3t1 aa4t1 aa1t2 aa2t2 aa3t2 aa4t2 -------- -------- -------- -------- -------- -------- -------- -------- aa1t1 0.36 aa2t1 - - 0.28 aa3t1 - - - - 0.47 aa4t1 - - - - - - 0.27 aa1t2 0.09 [.28] - - - - - - 0.29 aa2t2 - - 0.02 - - - - - - 0.22 aa3t2 - - - - 0.15 [.36] - - - - - - 0.37 aa4t2 - - - - - - 0.02 - - - - - - 0.24

Composite reliability CFA results Construct Parameter estimate z-value of parameter estimate Individual-item reliability Composite reliability (average variance extracted) AAT1 .88 (.66) λ11 1.08 14.78 0.64 λ21 1.11 16.07 0.72 λ31 0.92 12.98 0.53 λ41 1.22 16.33 0.73 θ11 0.66 9.12 -- θ22 0.48 8.06 θ33 0.76 9.88 θ44 0.55 7.87

Composite reliability CFA results Construct Parameter estimate z-value of parameter estimate Individual-item reliability Composite reliability (average variance extracted) AAT2 .91 (.72) λ52 1.19 16.25 0.71 λ62 1.17 17.29 0.78 λ72 0.98 14.82 0.63 λ82 1.24 17.02 0.76 θ55 0.56 8.81 -- θ66 0.40 7.77 θ77 9.58 θ88 0.48 8.05

Corrected correlation Factor correlations Original correlation Corrected correlation Exploratory factor analysis (PFA with Promax rotation) .75 n.a. Confirmatory factor analysis .90 Correlation of unweighted linear composites at t1, t2 .82 Average correlation of individual t1, t2 measures .63