Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,

Slides:



Advertisements
Similar presentations
STREGA Start up Meeting IGR - Geppo Cagnoli EGO – Cascina – 12 th May 2004.
Advertisements

R. Kumar 1, K. Tokmakov 2, A. V. Cumming 1, G. D. Hammond 1, J. Hough 1, S. Rowan 1 1 SUPA, University of Glasgow, Glasgow, G12 8QQ, UK, 2 SUPA, University.
2 mm diameter region 300 micron thermoelastic noise cancellation section Neck region, for transition from 2 mm stock to 300  m fibre 150  m section for.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
1 Test Mass Suspensions for AIGO Ben Lee The University of Western Australia.
Aspects of Fused Silica Suspensions in Advanced Detectors Geppo Cagnoli University of Texas at Brownsville and TSC LIGO, Hanford.
Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Silicate bonding on silicon and silica S. Reid, J. Hough, I. Martin, P. Murray, S. Rowan, J. Scott, M.v. Veggel University of Glasgow.
Silica Research in Glasgow Gianpietro Cagnoli – IGR - University of Glasgow GEO Collaboration Ginzton Lab, Stanford Caltech.
Bonding as an assembly technique in upgrades to aLIGO and detectors like ET and KAGRA R. Douglas 1, A. A. van Veggel 1, K. Haughian 1, D. Chen 2, L. Cunningham.
Development of a CO 2 laser machine for pulling and welding of silica fibres and ribbons D. Crooks for the GEO 600 collaboration Aspen January 2005 LIGO-G Z.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Conceptual Design for Advanced LIGO Suspensions Norna A Robertson University of Glasgow and Stanford University for the GEO suspension team +contribution.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
1 An overview of work in Glasgow relevant to the design study Stuart Reid 1 SUPA, University of Glasgow Glasgow University – 22 July 2010.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Composite mirror suspensions development status and directions ELiTES activity interim report JGW-G
SUSPENSION DESIGN FOR ADVANCED LIGO: Update on GEO Activities Norna A Robertson University of Glasgow for the GEO 600 suspension team LSC Meeting, Hanford.
Simulation for KAGRA cryogenic payload: vibration via heat links and thermal noise Univ. Tokyo, D1 Takanori Sekiguchi.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
18 th - 22 nd May 2015 LIGO-G GWADW Alaska Suspension Upgrades: Discussion Points + Questions Giles Hammond (Institute for Gravitational Research,
18 th - 22 nd May 2015 LIGO-G GWADW Alaska Suspension Upgrades for Enhanced Interferometers Giles Hammond (Institute for Gravitational Research,
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Thermal Noise in Thin Silicon Structures
Suspension Thermal Noise Giles Hammond (University of Glasgow) on behalf of the Strawman Red Team GWADW 2012, 18 th May 2012 LIGO-G
Advanced LIGO UK 1 LIGO-G Z Development issues for the UK Advanced LIGO project Caroline Cantley Glasgow University for the UK Advanced LIGO Team.
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Mechanical Loss and Thermal Conductivity of Materials for KAGRA and ET
C1) K. Tokmakov on behalf of the Advanced LIGO Suspensions Team Monolithic suspensions of the mirrors of the Advanced LIGO gravitational-wave detector.
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
111 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic interferometer technologies 19 May 2014 Gravitational Wave Advanced.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
Internal Mode Qs of Monolithically Suspended Test Masses in GEO600 Joshua Smith, Harald Lück, Stefan Goßler, Gianpietro Cagnoli, David Crooks, Sheila Rowan,
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
Modelling and Testing of Cryogenic Suspensions Giles Hammond Institute for Gravitational Research SUPA University of Glasgow on behalf of the KAGRA suspensions.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Bonding Experiments for Cryogenic Detectors R. Douglas 1, K. Haughian 1, A. A. van Veggel 1, L. Cunningham 1, G. Hammond 1, G. Hofmann 2, J. Hough 1, A.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
ALIGO Monolithic stage Giles Hammond, University of Glasgow for the Advanced LIGO Suspensions Team aLIGO/aVirgo Workshop Pisa, Italy 23 rd -24 th February.
Overview of monolithic suspension work for Advanced LIGO Mariëlle van Veggel, Mark Barton, Tim Bodiya, Alan Cumming, Liam Cunningham, Giles Hammond, Gregg.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Loss measurements in bulk materials
Pros and cons of cryogenics for Einstein Telescope and Cosmic Explorer
Optimization of thermal noise for ET-LF sensitivity
Cryogenic Si-Si Bond Strength Testing
Thermal noise calculations for cryogenic optics
Mirror thermal noises and its implications on the mirror design
Current status of coating research in Glasgow
Cryogenic Si-Si Bond Strength Testing
LIGO Scientific Collaboration
Test Mass Suspensions for AIGO
Characterisation of the aLIGO monolithic suspensions
Cryogenic Suspension for KAGRA and Suspension Thermal Noise Issues
R&D in Glasgow MATERIALS ACTIVITY AIM Silica
Presentation transcript:

Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond, Daniel Heinert, Jim Hough, Iain Martin, Peter Murray, Stuart Reid, Sheila Rowan, Christian Schwarz, Paul Seidel, Marielle van Veggel GWADW2010 Meeting, Kyoto 19/05/2010 Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena Sonderforschungsbereich Transregio 7 „Gravitationswellenastronomie“ Institute for Gravitational Research, University of Glasgow Einstein Telescope Design Study, WP2 „Suspension“

Nawrodt 05/2010 Overview Motivation and demands Thermal noise in suspension elements 3rd generation detectors –Cooling issues –Material selection –Thermal noise Summary #2/19 GWADW2010 Kyoto/Japan

Nawrodt 05/2010 GWADW2010 Kyoto/Japan Introduction sensitivity enhancement by a factor of 10 between 1 Hz and 10 kHz seismic suspension radiation pressure photon shot noise thermal noise (test masses) #3/19 [

Nawrodt 05/2010 Demands support the test mass (proper breaking strength) ability to produce (quasi-)monolithic suspension „proper“ dynamics (mode frequencies, mode separation, etc.) low thermal noise –low mechanical loss –„good“ thermal properties (thermo-elastic noise) high thermal conductivity to transport thermal load from test masses into the thermal bath #4/19 GWADW2010 Kyoto/Japan

Nawrodt 05/2010 Material selection possible materials are dependent on the test mass material: –fused silica –sapphire –silicon important „boundary condition“: –fabrication of suspension elements (cutting, polish, …) –design and shaping of suspension fibre/ribbons –keep crystalline structure in order to obtain a high thermal conductivity #5/19 GWADW2010 Kyoto/Japan can be bonded by means of catalysis-hydroxide bonding [e.g. van Veggel 2009, Dari 2010]

Nawrodt 05/2010 Thermal noise in suspension elements pendulum mode violin mode #6/19 GWADW2010 Kyoto/Japan with and [e.g. Saulson 1992] M , L,  n with Adding internal stiffness of fibre or ribbon leads to more realistic models. [e.g. Gonzalez 2000]

Nawrodt 05/2010 Mechanical loss in suspension elements -1- #7/19 GWADW2010 Kyoto/Japan [Gretarsson, Harry 1999] [Cagnoli, Willems 2002]

Nawrodt 05/2010 Dilution factor The mechanical loss within a fibre contributes inhomogeneously into the thermal noise calculation. for pendulum energy is stored in grav. potential (loss free) and the elastic potential of the fibre material (bending!) only energy stored in bending is dissipated to a fraction #8/19 GWADW2010 Kyoto/Japan Most of the bending occurs at the suspension point [e.g. Saulson 1992]

Nawrodt 05/2010 Mechanical loss in suspension elements -2- #9/19 GWADW2010 Kyoto/Japan Fused SilicaSapphireSilicon thermoelastic (unstressed) bulk Browniansurface total 300 K 20 K all dia. 1 mm

Nawrodt 05/2010 Surface loss in silicon suspension elements #10/19 GWADW2010 Kyoto/Japan  s = 0.5 pm Low surface loss in silicon (surface loss parameter ~1 order of magnitude lower than fused silica). [see talk by C. Schwarz]

Nawrodt 05/2010 Cancelation of TE loss in silicon cancellation of TE noise due to proper strength in fibre not needed (although possible) for crystalline fibres at low temperatures (TE peak shifts towards high frequencies while cooling – reason: large thermal conductivity) dY/dT < 0 for silicon  compensation possible for <0 ( K) #11/19 GWADW2010 Kyoto/Japan  < 0

Nawrodt 05/2010 Cooling issues residual optical absorption causes heating of the test masses heat capacity is very low at cryogenic temperatures (Debye T 3 law)  small absorption causes large temperature change suspension will provide the operational temperature which will also be defined by the mirror material (in case of silicon: <22K) suspension will operate in Casimir regime (phonon mean free path is limited by geometry)  thinner elements will have smaller thermal conductivity thinner elements will have their peak in TE loss at higher frequencies  tradeoff between thermal noise and conductivity #12/19 GWADW2010 Kyoto/Japan

Nawrodt 05/2010 Multi-stage design -1- #13/19 GWADW2010 Kyoto/Japan Thermal bath „Universe“ TM 5 m, 300 K  =  = m, 300 K  = [Majorana, Ogawa 1997, VIR-0015E-09]

Nawrodt 05/2010 Multi-stage design -1- #14/19 GWADW2010 Kyoto/Japan Thermal bath „Universe“ TM 5 m 300 K, 20 K  = m 300 K, 20 K  = [Majorana, Ogawa 1997, VIR-0015E-09]

Nawrodt 05/2010 Multi-stage design -3- #15/19 GWADW2010 Kyoto/Japan Thermal bath „Universe“ TM 5 m  = m  = K 5 K 20 K [Majorana, Ogawa 1997, VIR-0015E-09]

Nawrodt 05/2010 Towards a monolithic design using silicon -1- fabrication: –fabrication of (poly-)crystalline fibres was shown [Pisa group, µ-PD technique] –possible fabrication of ribbon-like structures (thin flexures for measuring coating thermal noise), limitted to wafer diameter (approx. substrate diameter, ~ dia. 500 mm) –possible fabrication of long ribbons/fibres from thinner but long single crystal ingots (fabrication + surface quality currently unclear), length up to several meters possible –use of ribbons might be justified by bonding method to be used for jointing the different parts (natural flat surface for ribbons) #16/19 GWADW2010 Kyoto/Japan

Nawrodt 05/2010 Towards a monolithic design using silicon -2- bonding + thermal conductivity: –silicate bonding possible with promising mechanical properties [talk by S. Reid] –initial measurements of the thermal conductivity of the bond by colleagues at Florence show a high thermal conductivity #17/19 GWADW2010 Kyoto/Japan [M. Lorenzini, WP2,3 workshop Jena 03/2010]

Nawrodt 05/2010 Shaping the suspension elements Willems et al > TN in non-uniform fibres (neck region) shaping allows a further decrease of thermal noise + tayloring the different mode types (pendulum, suspension, bounce, etc.) #18/19 GWADW2010 Kyoto/Japan [Cumming et al. CQG ]

Nawrodt 05/2010 Conclusion Summary –suspension design algorithm developed for AdvDetectors can be applied to 3rd generation as well –new material properties (cryogenic regime) do not cause problems –multi-stage suspension  weak coupling from upper to lower stages close to resonance –application to possible ET design: see talk tomorrow open questions: –monolithic suspension will be operated in non-thermal equilibrium  impact on thermal noise? –thermal conductivity through bonds needs detailed study –Investigation of direct bonding and lattice mismatch onto thermal conductivity #19/19 GWADW2010 Kyoto/Japan