February 19th 2009AlbaNova Instrumentation Seminar1 Christian Bohm Instrumentation Physics, SU Upgrading the ATLAS detector Overview Motivation The current.

Slides:



Advertisements
Similar presentations
L1 Track Trigger for ATLAS at HL-LHC
Advertisements

1 The ATLAS Missing E T trigger Pierre-Hugues Beauchemin University of Oxford On behalf of the ATLAS Collaboration Pierre-Hugues Beauchemin University.
Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger David Hadley on behalf of the ATLAS Collaboration.
P5 Meeting - Jan , US LHC University M&O Personnel University with major hardware responsibility at CERN Based on > 10 years of US Zeus experience.
LHCb Upgrade Overview ALICE, ATLAS, CMS & LHCb joint workshop on DAQ Château de Bossey 13 March 2013 Beat Jost / Cern.
A Fast Level 2 Tracking Algorithm for the ATLAS Detector Mark Sutton University College London 7 th October 2005.
The First-Level Trigger of ATLAS Johannes Haller (CERN) on behalf of the ATLAS First-Level Trigger Groups International Europhysics Conference on High.
L1Calo – towards phase II Mainz upgraders : B.Bauss, V.Büscher, R.Degele, A.Ebling, W.Ji, C.Meyer, S.Moritz, U.Schäfer, C.Schröder, E.Simioni, S.Tapprogge.
Upgrading the CMS simulation and reconstruction David J Lange LLNL April CHEP 2015D. Lange.
Status & Goals of LHC 1 1pb-1 of delivered and recorded luminosities reached! As of this morning: Delivered: 1420 nb-1 Recorded: 1245 nb-1 New record Inst.
J. Leonard, U. Wisconsin 1 Commissioning the Trigger of the CMS Experiment at the CERN Large Hadron Collider Jessica L. Leonard Real-Time Conference Lisbon,
The ATLAS trigger Ricardo Gonçalo Royal Holloway University of London.
The Belle SVD Trigger  Tom Ziegler  Vertex 2002  Kailua-Kona, Hawaii, 4-8 th nov The Belle SVD Trigger Tom Ziegler on behalf of the Belle SVD.
Real Time 2010Monika Wielers (RAL)1 ATLAS e/  /  /jet/E T miss High Level Trigger Algorithms Performance with first LHC collisions Monika Wielers (RAL)
General Trigger Philosophy The definition of ROI’s is what allows, by transferring a moderate amount of information, to concentrate on improvements in.
Samuel Silverstein Stockholm University L1Calo upgrade discussion Overview Issues  Latency  Rates  Schedule Proposed upgrade strategy R&D.
1 EMCal design MICE collaboration meeting Fermilab Rikard Sandström.
The SLHC and the Challenges of the CMS Upgrade William Ferguson First year seminar March 2 nd
Tracking at the ATLAS LVL2 Trigger Athens – HEP2003 Nikos Konstantinidis University College London.
The CMS Level-1 Trigger System Dave Newbold, University of Bristol On behalf of the CMS collaboration.
Faster tracking in hadron collider experiments  The problem  The solution  Conclusions Hans Drevermann (CERN) Nikos Konstantinidis ( Santa Cruz)
Roger Rusack – The University of Minnesota 1.
Claudia-Elisabeth Wulz Institute for High Energy Physics Vienna Level-1 Trigger Menu Working Group CERN, 9 November 2000 Global Trigger Overview.
1 A ROOT Tool for 3D Event Visualization in ATLAS Calorimeters Luciano Andrade José de Seixas Federal University of Rio de Janeiro/COPPE.
SLHC SG: ATLAS Pixel G. Darbo - INFN / Genova SLHC SG, July 2004 ATLAS Pixel at SLHC G. Darbo - INFN / Genova Talk overview: A table with different High.
ATLAS Forward Detector Trigger ATLAS is presently planning to install forward detectors (Roman Pot system) in the LHC tunnel with prime goal to measure.
April CMS Trigger Upgrade Workshop - Paris1 Christian Bohm, Stockholm University for the L1 calorimeter collaboration The ATLAS Trigger Upgrade.
Il Trigger di Alto Livello di CMS N. Amapane – CERN Workshop su Monte Carlo, la Fisica e le simulazioni a LHC Frascati, 25 Ottobre 2006.
ATLAS upgrades Xmass meeting Current ATLAS Operations ATLAS has been working very well  First beams in Sept recorded successfully by all sub- detectors.
Santa Cruz Meeting August 12 th 2008 Layout options & Schedule Issues David Lissauer 8/12/2008 1David Lissuaer, Santa Cruz Meeting.
Valeria Perez Reale University of Bern On behalf of the ATLAS Physics and Event Selection Architecture Group 1 ATLAS Physics Workshop Athens, May
All Experimenters MeetingDmitri Denisov Week of July 16 to July 22 D0 Summary  Delivered luminosity and operating efficiency u Delivered: 1.6pb -1 u Recorded:
EMCal in ALICE Norbert Novitzky 1. Outline How Electro-Magnetic Calorimeters works ? Physics motivation – What can we measure with Emcal ? – Advantages.
IOP HEPP: Beauty Physics in the UK, 12/11/08Julie Kirk1 B-triggers at ATLAS Julie Kirk Rutherford Appleton Laboratory Introduction – B physics at LHC –
1Frank Simon ALCPG11, 20/3/2011 ILD and SiD detectors for 1 TeV ILC some recommendations following experience from the CLIC detector study
T. Kawamoto1 ATLAS muon small wheels for ATLAS phase-1 upgrade LHCC T. Kawamoto (New) small wheels ? Why new small wheels for high.
D0 Status: 01/14-01/28 u Integrated luminosity s delivered luminosity –week of 01/ pb-1 –week of 01/ pb-1 –luminosity to tape: 40% s major.
All Experimenters MeetingDmitri Denisov Week of July 7 to July 15 Summary  Delivered luminosity and operating efficiency u Delivered: 1.4pb -1 u Recorded:
ATLAS P. Morettini - ATLAS Collaboration 3/9/20131Paolo Morettini - ICNFP 2013.
Overview of the High-Level Trigger Electron and Photon Selection for the ATLAS Experiment at the LHC Ricardo Gonçalo, Royal Holloway University of London.
FPGAs in ATLAS Front-End Electronics Henrik Åkerstedt, Steffen Muschter and Christian Bohm Stockholm University.
ATLAS and the Trigger System The ATLAS (A Toroidal LHC ApparatuS) Experiment is one of the four major experiments operating at the Large Hadron Collider.
Hardeep Bansil (University of Birmingham) on behalf of L1Calo collaboration ATLAS UK Meeting, Royal Holloway January 2011 Argonne Birmingham Cambridge.
Fabiola Gianotti, 14/10/20031  s = 28 TeV upgrade L = upgrade “SLHC = Super-LHC” vs Question : do we want to consider also the energy upgrade option.
A Fast Hardware Tracker for the ATLAS Trigger System A Fast Hardware Tracker for the ATLAS Trigger System Mark Neubauer 1, Laura Sartori 2 1 University.
July 27, 2002CMS Heavy Ions Bolek Wyslouch1 Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider Bolek Wyslouch MIT for the CMS Collaboration.
Upgrade intro and report on DESY Upgrade Meeting 5 May 2010 Norman Gee.
ATLAS and the Trigger System The ATLAS (A Toroidal LHC ApparatuS) Experiment [1] is one of the four major experiments operating at the Large Hadron Collider.
S. Dasu, University of Wisconsin February Calorimeter Trigger for Super LHC Electrons, Photons,  -jets, Jets, Missing E T Current Algorithms.
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
Samuel Silverstein, SYSF ATLAS calorimeter trigger upgrade work Overview Upgrade to PreProcessor MCM Topological trigger.
TDAQ and L1Calo and Chamonix (Personal Impressions) 3 Mar2010 Norman Gee.
Upgrade Intro 10 Jan 2010 Norman Gee. N. Gee – Upgrade Introduction 2 LHC Peak Luminosity Lumi curve from F.Zimmermann : Nov Upgrade Week ? ?
Introduction to L1Calo Upgrade L1Calo Collaboration Meeting Cambridge 23-Mar-2011 Norman Gee.
14 Aug. 08DOE Review John Huth Future Harvard ATLAS Plans John Huth.
EPS HEP 2007 Manchester -- Thilo Pauly July The ATLAS Level-1 Trigger Overview and Status Report including Cosmic-Ray Commissioning Thilo.
Scope R&D Participants/Infrastructure
ATLAS calorimeter and topological trigger upgrades for Phase 1
ATLAS Upgrade Program Sarah Demers, US ATLAS Fellow with BNL
L1Calo Upgrade Phase 2 Introduction and timescales
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
L1Calo upgrade discussion
ATLAS L1Calo Phase2 Upgrade
The First-Level Trigger of ATLAS
Plans for checking hadronic energy
Commissioning of the ALICE-PHOS trigger
Low Level HLT Reconstruction Software for the CMS SST
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
The LHCb Front-end Electronics System Status and Future Development
Presentation transcript:

February 19th 2009AlbaNova Instrumentation Seminar1 Christian Bohm Instrumentation Physics, SU Upgrading the ATLAS detector Overview Motivation The current design and why Why upgrade How Planning the short range development

February 19th 2009AlbaNova Instrumentation Seminar2 Motivation Accelerator upgrades will increase the luminosity above the design value cm -2 s -1 Phase II Bunch Crossing (BC) rate may change 25->50 ns

February 19th 2009AlbaNova Instrumentation Seminar3 Design criteria/considerations for an ATLAS type detector Higher energies to study new phenomena Large luminosity to study rare events – many events to reach 5 

February 19th 2009AlbaNova Instrumentation Seminar4 Design criteria/considerations for an ATLAS type detector Higher energies to study new phenomena Large luminosity to study rare events – many events to reach 5  Tracker near beam pipe to determine the source position Magnet around beam pipe for momentum information Large E/M calorimeter to stop and measure energy of electrons and photons – not too large to stop hadrons as well

February 19th 2009AlbaNova Instrumentation Seminar5 Design criteria/considerations for an ATLAS type detector Higher energies to study new phenomena Large luminosity to study rare events – many events to reach 5  Tracker near beam pipe to determine the source position Magnet around beam pipe for momentum information Large E/M calorimeter to stop and measure energy of electrons and photons – not too large to stop hadrons as well Large hadron calorimeter to stop and measure energy of hadrons Minimize matter in front of calorimeters to improve resolution Should the magnet be inside or outside the calorimeters Large muon detector with strong magnetic field to measure muon energies with high precision.

February 19th 2009AlbaNova Instrumentation Seminar6 Design criteria/considerations for the on-detector electronics Radian tolerance and reliability main problems Long design cycles -> problems with obsolescence Paradigm shifts during long development processes

February 19th 2009AlbaNova Instrumentation Seminar7 Design criteria/considerations for the on-detector electronics Radiation tolerance and reliability main problems Long design cycles -> problems with obsolescence Paradigm shifts during long development processes Radiation tolerance achievable – bandwidth expensive On-detector logic and memories – transfer only if necessary Radiation tolerance expensive – bandwidth achievable Minimize on-detector electronics – transfer as soon as possible Radiation tolerance achievable – bandwidth achievable On-detector logic OK but minimize for reliability – protect for transient errors

February 19th 2009AlbaNova Instrumentation Seminar8 Design criteria/considerations for the on-detector electronics Radian tolerance and reliability main problems Long design cycles -> problems with obsolescence Paradigm shifts during long development processes Radiation tolerance achievable – bandwidth expensive On-detector logic and memories – transfer only if necessary Radiation tolerance expensive – bandwidth achievable Minimize on-detector electronics – transfer as soon as possible Radiation tolerance achievable – bandwidth achievable On-detector logic OK but minimize for reliability – protect for transient errors ASICs -> FPGAs (sometimes even on-detector) Another change: During phase 0 LHC projects were often driving technology development Now it is telecom

February 19th 2009AlbaNova Instrumentation Seminar9 Current design ATLAS

February 19th 2009AlbaNova Instrumentation Seminar10 Current design ATLAS data Flow 40M Hz LHC physics looks for rare events – 1 in  High event rates and  High selectivity new data every 25 ns About 100 million channels

February 19th 2009AlbaNova Instrumentation Seminar11 Current design ATLAS data Flow 40M Hz 1 event in 400 new data every 25 ns Since all data must be stored while waiting for the L1 decision the L1 processing must be quick – <2.5ns Data from entire detector but with low spatial resolution and reduced dynamic range from calorimeters and muon detector About 100 million channels 75 kHz The high granularity data is merged into roughly 64x64 trigger towers each.1x.1 in  and  where  = log  Design requirement

February 19th 2009AlbaNova Instrumentation Seminar12 Current design ATLAS data Flow 2 kHz 40M Hz new data every 25 ns About 100 million channels 1 event in 100 Data from ROIs with high spatial resolution and full dynamic range from all subdetectors 75 kHz

February 19th 2009AlbaNova Instrumentation Seminar13 Current design ATLAS data Flow new data every 25 ns 200 Hz 2 kHz 75 kHz 40M Hz About 100 million channels 1 event in 100 Entire detector with high spatial resolution and full dynamic range from all subdetectors To Grid

February 19th 2009AlbaNova Instrumentation Seminar14 Current design L1 Trigger algorithms Look for isolated particles e/   /had Simplistically regard the L1 processor as consisting of 4096 parallel processors – one for each.1x.1 trigger tower Count the number different threshold combinations in the central trigger processor (CTP)

February 19th 2009AlbaNova Instrumentation Seminar15 Current design L1 Trigger algorithms Look for JETs 0.4 x x x 0.8 n ROI Identification u Identify 0.4 x 0.4 windows that are local maxima n Jet Identification u Apply thresholds to 0.4, 0.6, or 0.8 clusters around the local maxima u 8 Jet definitions available, each with selectable energy threshold and cluster size Simplistically regard the L1 processor as consisting of 1024 parallel processors – one for each.2x.2 trigger tower Count the number different threshold combinations in the CTP

February 19th 2009AlbaNova Instrumentation Seminar16 The x3 increased luminosity will lead to increased radiation levels and more pile-up Phase I upgrade, 6 months The inner layer of the inner detector must be replaced due to radiation damage

February 19th 2009AlbaNova Instrumentation Seminar17 The phase I upgrade Since the innermost layer cannot be replaced a new layer (IBL) is inserted closer to the beam pipe -> smaller beam pipe Another detector part that may need replacement is the FCAL electronics Increased luminosity ->more events Unrealistic to change level 2 rate -> Improve L1 rejection One way is to increase thresholds Another way is to improve L1 trigger by bringing some L2 processing down to L1

February 19th 2009AlbaNova Instrumentation Seminar18 The phase I upgrade Topological algorithms can be introduced in the L1 calorimeter trigger Use the ROI position information Takes additional time to determine in L1Calo and to evaluate in the L1 CTP The latency margin seem to suffice The main part of L1Calo stays inserting a new layer between L1Calo and CTP and a new CTP

February 19th 2009AlbaNova Instrumentation Seminar19 The x10 increased luminosity will lead to more increased radiation levels and still worse pile-up Phase II upgrade, 1.5 years All the on detector electronics has reached its designed life time

February 19th 2009AlbaNova Instrumentation Seminar20 Phase II upgrade Completely new inner detector The rest of the detector more or less OK New calorimeter on-detector and off-detector electronics Increased luminosity ->new electronics Increased luminosity ->more events->more logic Level 2 rate fixed?! Completely new L1 trigger

February 19th 2009AlbaNova Instrumentation Seminar21 Phase II upgrade Increased luminosity -> increased L1 trigger efficiency -> more information to L1 High granularity, depth segmented info from calorimeters Higher thresholds not enough more info from muon detector? or a Track trigger? Simulations needed

February 19th 2009AlbaNova Instrumentation Seminar22 Calorimeter ideas Full readout Minimize on-detector electronics Massive data transfers Preprocessor delivers tower info with flags e.g. high granularity or depth flags

February 19th 2009AlbaNova Instrumentation Seminar23 Track trigger ideas High Pt trigger Supply track info on demand -> much longer latencies L 1.5 track trigger Very challenging

February 19th 2009AlbaNova Instrumentation Seminar24 Practical planning Less work than phase 0 Financing Long lead times Radiation tolerance testing SIMULATIONS NEEDED Experience from running ATLAS (radiation damage) Coordination with machine, CMS,… Organize installation Organizational structures: USGs, UPOs, ATLAS weeks, meetings, meetings,…. Schedule Phase I (2013) and phase II (2017) – mostly controlled by machine development which is not primarily affected by the delay, the schedule may thus not slide with the startup delay. Atlas upgrade LoI 2009, IBL TDR 2009, upgrade TP 2010 (maybe with options), upgrade TDR 2011 We are already late compared to phase 0!