5.7 Complex Numbers 12/17/2012.

Slides:



Advertisements
Similar presentations
7.5 – Rationalizing the Denominator of Radicals Expressions
Advertisements

Unit 4Radicals Complex numbers.
5-4 Complex Numbers (Day 1)
4.5 Complex Numbers Objectives:
COMPLEX NUMBERS Objectives
Chapter 5 Section 4: Complex Numbers. VOCABULARY Not all quadratics have real- number solutions. For instance, x 2 = -1 has no real-number solutions because.
Complex Numbers.
6.2 – Simplified Form for Radicals
Review and Examples: 7.4 – Adding, Subtracting, Multiplying Radical Expressions.
Complex Numbers OBJECTIVES Use the imaginary unit i to write complex numbers Add, subtract, and multiply complex numbers Use quadratic formula to find.
Section 5.4 Imaginary and Complex Numbers
1.3 Complex Number System.
4.6 – Perform Operations with Complex Numbers Not all quadratic equations have real-number solutions. For example, x 2 = -1 has no real number solutions.
5.6 Complex Numbers. Solve the following quadratic: x = 0 Is this quadratic factorable? What does its graph look like? But I thought that you could.
Section 2.2 The Complex Numbers.
Solve the equation. 2(x + 7)2 = 16.
Warm Up #3 Find the exact value. 2. –√ √49 ANSWER –12 7 ANSWER
Warm-Up: December 13, 2011  Solve for x:. Complex Numbers Section 2.1.
Warm-Up Exercises ANSWER ANSWER x =
Unit 2 – Quadratic, Polynomial, and Radical Equations and Inequalities
1 C ollege A lgebra Linear and Quadratic Functions (Chapter2) 1.
5.4 Complex Numbers Until now, you have always been told that you can’t take the square root of a negative number. If you use imaginary units, you can!
2.5 Introduction to Complex Numbers 11/7/2012. Quick Review If a number doesn’t show an exponent, it is understood that the number has an exponent of.
Imaginary Number: POWERS of i: Is there a pattern?
Chapter 2 Polynomial and Rational Functions. Warm Up 2.4  From 1980 to 2002, the number of quarterly periodicals P published in the U.S. can be modeled.
MM218 - Unit 7 Seminar Topics
5.6 Solving Quadratic Function By Finding Square Roots 12/14/2012.
Complex Numbers (and the imaginary number i)
4.6 Perform Operations With Complex Numbers. Vocabulary: Imaginary unit “i”: defined as i = √-1 : i 2 = -1 Imaginary unit is used to solve problems that.
5.7 Complex Numbers 12/4/2013. Quick Review If a number doesn’t show an exponent, it is understood that the number has an exponent of 1. Ex: 8 = 8 1,
1 What you will learn  Lots of vocabulary!  A new type of number!  How to add, subtract and multiply this new type of number  How to graph this new.
4.1 Properties of Exponents
Complex Number System Adding, Subtracting, Multiplying and Dividing Complex Numbers Simplify powers of i.
7.7 Complex Numbers. Imaginary Numbers Previously, when we encountered square roots of negative numbers in solving equations, we would say “no real solution”
Complex Numbers Day 1. You can see in the graph of f(x) = x below that f has no real zeros. If you solve the corresponding equation 0 = x 2 + 1,
Complex Numbers Definitions Graphing 33 Absolute Values.
Imaginary Number: POWERS of i: Is there a pattern? Ex:
Complex Numbers Essential Question: How do you perform operations on complex numbers? Demonstrated in writing on a summary at the end of the notes.
1.5 COMPLEX NUMBERS Copyright © Cengage Learning. All rights reserved.
Warm-Up Solve Using Square Roots: 1.6x 2 = x 2 = 64.
5-7: COMPLEX NUMBERS Goal: Understand and use complex numbers.
Drill #81: Solve each equation or inequality
Unit 2 – Quadratic, Polynomial, and Radical Equations and Inequalities Chapter 5 – Quadratic Functions and Inequalities 5.4 – Complex Numbers.
How do I use the imaginary unit i to write complex numbers?
Complex Numbers n Understand complex numbers n Simplify complex number expressions.
5.9 Complex Numbers Objectives: 1.Add and Subtract complex numbers 2.Multiply and divide complex numbers.
5.9 Complex Numbers Alg 2. Express the number in terms of i. Factor out –1. Product Property. Simplify. Multiply. Express in terms of i.
Chapter 4.6 Complex Numbers. Imaginary Numbers The expression does not have a real solution because squaring a number cannot result in a negative answer.
Any questions about the practice? Page , 11, 13, 21, 25, 27, 39, 41, 53.
Add ___ to each side. Example 1 Solve a radical equation Solve Write original equation. 3.5 Solve Radical Equations Solution Divide each side by ___.
ALGEBRA TWO CHAPTER FIVE QUADRATIC FUNCTIONS 5.4 Complex Numbers.
Objectives Define and use imaginary and complex numbers.
Solve a quadratic equation
Perform Operations with Complex Numbers
Copyright © Cengage Learning. All rights reserved.
Complex Numbers Objectives Students will learn:
6.7 Imaginary Numbers & 6.8 Complex Numbers
Section 9.7 Complex Numbers.
Complex Numbers and Solving Equations
Complex Numbers Using Complex Conjugates in dividing complex numbers and factoring quadratics -- Week 15 11/19.
3.2 Complex Numbers.
Complex Number and Roots
Lesson 2.4 Complex Numbers
Multiplying, Dividing, and Simplifying Radicals
Imaginary Numbers though they have real world applications!
Warm Up #3 Find the exact value. 2. –√ √49 ANSWER –12 7 ANSWER
Complex Numbers and Solving Equations
Warm-Up #9 Find the discriminant and determine the number of real solutions. Then solve. 1)
4.6 – Perform Operations with Complex Numbers
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
Presentation transcript:

5.7 Complex Numbers 12/17/2012

Quick Review Exponent Rule: If a number doesn’t show an exponent, it is understood that the number has an exponent of 1. Ex: 8 = 81 , x = x1 , -5 = -51 Also, any number raised to the Zero power is equal to 1 Ex: 30 = 1 -40 = 1 Exponent Rule: When multiplying powers with the same base, you add the exponent. x2 • x3 = x5 y • y7 = y8

The square of any real number x is never negative, so the equation x2 = -1 has no real number solution. To solve this x2 = -1 , mathematicians created an expanded system of numbers using the IMAGINARY UNIT, i.

Simplifying i given any powers The pattern repeats after every 4. So you can find i raised to any power by dividing the exponent by 4 and see what the remainder is. Based on that remainder, you can determine it’s value. Step 1. 22÷ 4 has a remainder of 2 Step 2. i22 = i2 Step 1. 51 ÷ 4 has a remainder of 3 Step 2. i51 = i3 Do you see the pattern yet?

Checkpoint Find the value of 1. i 15 2. i 20   3. i 61  4. i 122

Properties of Square Root of Negative Number

Example 1 Solve the equation. = 7x 2 49 – a. b. = 3x 2 5 – 29 SOLUTION Solve a Quadratic Equation Solve the equation. = 7x 2 49 – a. b. = 3x 2 5 – 29 SOLUTION Write original equation. = 7x 2 49 – a. Divide each side by 7. = x 2 7 – Take the square root of each side. = x + – 7 Write in terms of i. = x + – 7 i

Example 1 b. = 3x 2 29 – 5 = 3x 2 24 – = x 2 8 – = x + – 8 = x + – 8 i Solve a Quadratic Equation b. = 3x 2 29 – 5 Write original equation. Add 5 to each side. = 3x 2 24 – Divide each side by 3. = x 2 8 – Take the square root of each side. = x + – 8 Write in terms of i. = x + – 8 i Simplify the radical. = x + – 2 i 8

Checkpoint Solve the equation. 1. x 2 = – 3 ANSWER 3, i 3 – 2. = x 2 7 Solve a Quadratic Equation Solve the equation. 1. x 2 = – 3 ANSWER 3, i 3 – 2. = x 2 7 – ANSWER 7, i 7 – 3. = x 2 20 – ANSWER 5, 2 5 – i 4. = x 2 3 2 + – ANSWER 5, i 5 – 5. = y 2 4 – 12 ANSWER 2, 2 – i

Adding and Subtracting Complex Numbers Is a number written in the standard form a + bi where a is the real part and bi is the imaginary part. Add/Subtract the real parts, then add/subtract the imaginary parts Complex Number Adding and Subtracting Complex Numbers

Write as a complex number in standard form. ( ( 3 + 2i ( + 1 – i ( Example 2 Add Complex Numbers Write as a complex number in standard form. ( ( 3 + 2i ( + 1 – i ( SOLUTION Group real and imaginary terms. 2i 3 ( + i 1 – = 2 i Write in standard form. = 4 + i 11

Write as a complex number in standard form. 2i 6 ( – 1 Example 3 Subtract Complex Numbers Write as a complex number in standard form. 2i 6 ( – 1 SOLUTION Group real and imaginary terms. 2i 6 ( = 1 2 i + – -1 + 2i Simplify. = 5 + 0i Write in standard form. = 5 12

Write the expression as a complex number in standard form. Checkpoint Add and Subtract Complex Numbers Write the expression as a complex number in standard form. 6. ( 4 – ( 2i ( + 1 + 3i ( ANSWER i 5 + 7. i 3 ( – + 4i 2 ANSWER 3i 5 + 8. 6i 4 ( + 3i 2 – ANSWER 3i 2 + 9. 4i 2 ( + 7i – ANSWER 3i 4 –

Write the expression as a complex number in standard form. Checkpoint Add and Subtract Complex Numbers Write the expression as a complex number in standard form. 11. 2i 1 ( – + 5i 4 ANSWER 3i 5 + 12. i 2 ( – 4i 1 ANSWER 3i 3 +

Write the expression as a complex number in standard form. Example 4 Multiply Complex Numbers Write the expression as a complex number in standard form. a. 1 ( 3i + – 2i b. 3i 6 ( + 3i 4 ( – SOLUTION Multiply using distributive property. 1 ( 3i + – 2i = 6i 2 a. 1 ( – 2i 6 = + Use i 2 1. 6 2i – = Write in standard form.

Example 4 b. 3i 6 ( + 4 – 24 18i 12i 9i 2 = 24 6i – 9i 2 = 24 6i – 1 ( Multiply Complex Numbers b. 3i 6 ( + 4 – 24 18i 12i 9i 2 = Multiply using FOIL. 24 6i – 9i 2 = Simplify. 24 6i – 1 ( 9 = Use i 2 1. 6i 33 – = Write in standard form. 16

Complex Conjugates Two complex numbers of the form a + bi and a - bi Their product is a real number because (3 + 2i)(3 – 2i) using FOIL 9 – 6i + 6i -4i2 9 – 4i2 i2 = -1 9 – 4(-1) = 9 + 4 = 13 Is used to write quotient of 2 complex numbers in standard form (a + bi)

Write as a complex number in standard form. 2i 3 + 1 – a + bi SOLUTION Example 5 Divide Complex Numbers Write as a complex number in standard form. 2i 3 + 1 – a + bi SOLUTION 2i 3 + 1 – = • Multiply the numerator and the denominator by 1 2i, the complex conjugate of 1 2i. Multiply using FOIL. 1 2i 3 6i + – 4i 2 = 3 8i + 1 ( – 4 = Simplify and use i 2 1. 8i + – 1 5 = Simplify. 5 1 – 8 i + = Write in standard form. 18

Write the expression as a complex number in standard form. Checkpoint Multiply and Divide Complex Numbers Write the expression as a complex number in standard form. 13. i 2 ( – 3i ANSWER 6i 3 + 14. ( 2i 1 + i 2 – ANSWER 3i 4 + 15. i 2 + 1 – ANSWER 2 1 + 3 i

Graphing Complex Number Imaginary axis Real axis

Ex: Graph 3 – 2i To plot, start at the origin, move 3 units to the right and 2 units down 3 2 3 – 2i

Ex: Name the complex number represented by the points. Answers: A is 1 + i B is 0 + 2i = 2i C is -2 – i D is -2 + 3i D B A C

Homework 5.7 p.264 #17-20, 27/29, 33-35, 40, 43, 45, 46, 52-54, 64-71 5.6

Checkpoint Solve the equation. 1. x 2 = – 3 2. = x 2 7 – 3. = x 2 20 – Solve a Quadratic Equation Solve the equation. 1. x 2 = – 3 2. = x 2 7 – 3. = x 2 20 – 4. = x 2 3 2 + – 5. = y 2 4 – 12

Write the expression as a complex number in standard form. Checkpoint Add and Subtract Complex Numbers Write the expression as a complex number in standard form. 6. ( 4 – ( 2i ( + 1 + 3i ( 7. i 3 ( – + 4i 2 8. 6i 4 ( + 3i 2 – 9. 4i 2 ( + 7i –

Write the expression as a complex number in standard form. Checkpoint Add and Subtract Complex Numbers Write the expression as a complex number in standard form. 10. 2i 1 ( – + 5i 4 11. i 2 ( – 4i 1 Write the expression as a complex number in standard form. 12. i 2 ( – 3i 14. i 2 + 1 – 13. ( 2i 1 + i 2 –