Sullivan PreCalculus Section 4.4 Logarithmic Functions Objectives of this Section Change Exponential Expressions to Logarithmic Expressions and Visa Versa.

Slides:



Advertisements
Similar presentations
Logarithmic Functions.
Advertisements

Graphs of Exponential and Logarithmic Functions
Logarithmic Functions Section 3.2. Objectives Rewrite an exponential equation in logarithmic form. Rewrite a logarithmic equation in exponential form.
Logarithmic Functions. Definition of a Logarithmic Function For x > 0 and b > 0, b = 1, y = log b x is equivalent to b y = x. The function f (x) = log.
4.3 Logarithmic Functions and Graphs Do Now Find the inverse of f(x) = 4x^2 - 1.
Logarithmic Functions & Their Graphs
5.2 Logarithmic Functions & Their Graphs
Logarithmic Functions
Logarithmic Functions Section 2. Objectives Change Exponential Expressions to Logarithmic Expressions and Logarithmic Expressions to Exponential Expressions.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
SECTION 4.4 LOGARITHMIC FUNCTIONS LOGARITHMIC FUNCTIONS.
Logarithmic Functions Section 3-2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Definition: Logarithmic Function For x  0 and.
4.2 Logarithmic Functions
Definition of a Logarithmic Function For x > 0 and b > 0, b≠ 1, y = log b x is equivalent to b y = x The function f (x) = log b x is the logarithmic function.
Exponential and Logarithmic Functions Logarithmic Functions EXPONENTIAL AND LOGARITHMIC FUNCTIONS Objectives Graph logarithmic functions. Evaluate.
Logarithmic Functions
Welcome! The Topic For Today Is…. Exponential and Logarithmic Equations Exponential Functions Logarithmic Functions Expanding Expressions Condensing Expressions.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
Chapter 4.3 Logarithms. The previous section dealt with exponential function of the form y = a x for all positive values of a, where a ≠1.
Logarithms.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
Lesson 5-6: Logarithms and Logarithmic Functions
Logarithmic Functions Section 8.4. WHAT YOU WILL LEARN: 1.How to evaluate logarithmic functions.
The exponential function f with base a is defined by f(x) = ax
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
Section 6.3 – Exponential Functions Laws of Exponents If s, t, a, and b are real numbers where a > 0 and b > 0, then: Definition: “a” is a positive real.
Sullivan Algebra and Trigonometry: Section 5.3 Exponential Functions Objectives of this Section Evaluate Exponential Functions Graph Exponential Functions.
Notes Over 8.4 Rewriting Logarithmic Equations Rewrite the equation in exponential form.
Exponential Functions MM3A2e Investigate characteristics: domain and range, asymptotes, zeros, intercepts, intervals of increase and decrease, rate of.
6.3 Logarithmic Functions. Change exponential expression into an equivalent logarithmic expression. Change logarithmic expression into an equivalent.
6.2 Exponential Functions. An exponential function is a function of the form where a is a positive real number (a > 0) and. The domain of f is the set.
Logarithms 2.5 Chapter 2 Exponents and Logarithms 2.5.1
10.2 Logarithms and Logarithmic Functions Objectives: 1.Evaluate logarithmic expressions. 2.Solve logarithmic equations and inequalities.
PRE-AP PRE-CALCULUS CHAPTER 3, SECTION 3 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS
Logarithms The previous section dealt with exponential functions of the form y = a x for all positive values of a, where a ≠ 1. The horizontal.
Logarithmic Functions Just another way to write exponents.
5.2 Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate,
Section 5.4 Logarithmic Functions. LOGARITHIMS Since exponential functions are one-to-one, each has an inverse. These exponential functions are called.
4.3 Logarithmic Functions Logarithms Logarithmic Equations
4.3 – Logarithmic functions
The Logarithm as Inverse Exponential Function Recall: If y is a one to one function of x, to find the inverse function reverse the x’s and y’s and solve.
Math 71B 9.3 – Logarithmic Functions 1. One-to-one functions have inverses. Let’s define the inverse of the exponential function. 2.
4.2 Logarithmic Functions
3.2 Logarithmic Functions and Their Graphs We know that if a function passes the horizontal line test, then the inverse of the function is also a function.
Logarithmic Functions Section 3-2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 BIG PICTURE Logarithms are just another way to.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
Example 1 LOGARITHMIC FORM EXPONENTIAL FORM a. log2 16 = 4 24 = 16 b.
LEQ: How do you evaluate logarithms with a base b? Logarithms to Bases Other Than 10 Sec. 9-7.
Logarithmic Functions Logarithms Logarithmic Equations Logarithmic Functions Properties of Logarithms.
LEQ: HOW DO YOU EVALUATE COMMON LOGARITHMS? Common Logarithms Sec. 9-5.
LEQ: What is the process used to evaluate expressions containing the natural logarithm?
Copyright © 2011 Pearson Education, Inc. Logarithmic Functions and Their Applications Section 4.2 Exponential and Logarithmic Functions.
Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate, and.
Sullivan Algebra and Trigonometry: Section 6.4 Logarithmic Functions
Sullivan Algebra and Trigonometry: Section 6.3 Exponential Functions
Sullivan Algebra and Trigonometry: Section 6.3
Logarithmic Functions and Their Graphs
6.3 Logarithmic Functions
4.2 Exponential Functions
6.2 Exponential Functions
Section 5.2 – Logarithmic Functions
THE LOGARITHMIC FUNCTION
4.2 Exponential Functions
6.3 Logarithms and Logarithmic Functions
Logarithmic Functions
4.3 Logarithmic Functions
Sullivan Algebra and Trigonometry: Section 6.2
4.3 Logarithmic Functions
Logarithmic Functions
Review: How do you find the inverse of a function? Application of what you know… What is the inverse of f(x) = 3x? y = 3x x = 3y y = log3x f-1(x) = log3x.
Presentation transcript:

Sullivan PreCalculus Section 4.4 Logarithmic Functions Objectives of this Section Change Exponential Expressions to Logarithmic Expressions and Visa Versa Evaluate the Domain of a Logarithmic Function Graph Logarithmic Functions Solve Logarithmic Equations

If a u = a v, then u = v

The Logarithmic Function is the inverse of the exponential function. Therefore: Domain of logarithmic function = Range of exponential function = (0, ) Range of logarithmic function = Domain of exponential function = (-, )

The graph of a log function can be obtained using the graph of the corresponding exponential function. The graphs of inverse functions are symmetric about y = x. (1, 0) (0, 1) a > 1

(0, 1) (1, 0) 0 < a < 1

1. The x-intercept of the graph is 1. There is no y-intercept. 2. The y-axis is a vertical asymptote of the graph. 3. A logarithmic function is decreasing if The graph is smooth and continuous, with no corners or gaps.

The logarithmic function with base e is called the natural logarithm. This function occurs so frequently it is given its own symbol: ln

(1, 0) (e, 1)

(4, 0) (e + 3, 1) x = 3 Domain: x > 3 (since x - 3 > 0) Range: All Real Numbers Vertical Asymptote: x = 3

To solve logarithmic equations, first rewrite the equation in exponential form. Example: Solve