Simulations and exploitation of GNSS-R signals from a 60-meter lighthouse for applications in surface hydrology processes Nicolas ROUSSEL Laurent LESTARQUIT.

Slides:



Advertisements
Similar presentations
N. Pierdicca 1, L. Guerriero 2, E. Santi 3, A. Egido 4 1 DIET - Sapienza Univ. of Rome, Rome, Italy 2 DISP - University of Tor Vergata, Rome, Italy 3 CNR/IFAC,
Advertisements

OUTLINE Motivation Modeling Simulation Experiments Conclusions.
AFCEAs International Student Conference 2009 Brussels, October SDR GNSS Receiver Acquisition Module LabVIEW Implementation Lt. Pasquale Digregorio.
Data Communication lecture10
T GPS Fundamentals Your location is: 37 o ’ N 122 o ’ W.
Validation of radiometric models and simulated KaRIn/SWOT data based on ground and airborne acquisitions Page de titre, mentionner contributions Altamira.
CELLULAR COMMUNICATIONS 2. Radio Wave Propagation.
Jie Liu Microsoft Research Redmond, WA GPS Fundamentals Mobile Location Sensing Tutorial at MobiSys 2013.
Chapter Fifteen: Radio-Wave Propagation
Global Navigation Satellite Systems
Collaboration FST-ULCO 1. Context and objective of the work  Water level : ECEF Localization of the water surface in order to get a referenced water.
Charles Tytler  Pseudo-satellites:  Ground-based transmitters of GPS signals  Augment GPS  Applications:  Indoor GPS  Mining, Caves  Underground/Underwater.
MR P.Durkee 5/20/2015 MR3522Winter 1999 MR Remote Sensing of the Atmosphere and Ocean - Winter 1999 Active Microwave Radar.
Mapping the GPS Multipath Environment Using the Signal-to- Noise Ratio (SNR) Andria Bilich*, Kristine M. Larson + * Geosciences Research Division, National.
GNSS-R, an Innovative Remote Sensing Tool for the Mekong Delta, Jamila Beckheinrich, Brest 2013 Slide 1 GNSS Reflectometry, an Innovative Remote Sensing.
Chapter 15: Data Transmission Business Data Communications, 5e.
Workshop EGNOS KRAKÓW GNSS RECEIVER TESTING TECHNIQUES IN A LABORATORY ENVIRONMENT Institute of Radar Technology Military University of Technology.
A SINGLE FREQUENCY GPS SOFTWARE RECEIVER
Connectivity Lab University of California, Berkeley Location and Timing with C/A code in GPS Wanbin Tang Jan 24, 2007.
Satellite observation systems and reference systems (ae4-e01) Signal Propagation E. Schrama.
Lecture 4b Fiber Optics Communication Link 1. Introduction 2
Propagation characteristics of wireless channels
SNOW MONITORING USING GNSS-R TECHNIQUES § Remote Sensing Lab, Dept. TSC, Building D3, Universitat Politècnica de Catalunya, Barcelona, Spain and IEEC CRAE/UPC.
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
Ground-Based Altimetry Using a Single- Receiver Single-Frequency GNSS Phase Ambiguity Resolution Technique G. Stienne* S. Reboul J.-B. Choquel M. Benjelloun.
EE 570: Location and Navigation: Theory & Practice The Global Positioning System (GPS) Thursday 11 April 2013 NMT EE 570: Location and Navigation: Theory.
EE513 Audio Signals and Systems Noise Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
New Scientific Applications with Existing CGPS Capabilities Earthquakes, Soil Moisture, and Environmental Imaging Andria Bilich Geosciences Research Division.
SVY 207: Lecture 4 GPS Description and Signal Structure
Department of Computer Science and Electrical Engineering GNSS Research Group – EIS Laboratory GNSS Bistatic Radar September 14, 2006 Tore Lindgren, Dennis.
ODINAFRICA/GLOSS Sea Level Training Course
Characteristics Radio Frequency signals consist of the following: Polarity Wavelength Frequency Amplitude Phase These characteristics are defined by the.
15 Feb 2001Property of R. Struzak1 Antenna Fundamentals (4) R. Struzak School on Digital and Multimedia Communications Using.
© R.S. Lab, UPC IGARSS, Vancouver, July, 2011 OIL SLICKS DETECTION USING GNSS-R E. Valencia, A. Camps, H. Park, N. Rodríguez-Alvarez, X. Bosch-Lluis.
GNSS Receiver - Software Radio Concept František Vejražka Czech Technical University in Prague Faculty of Electrical Engineering.
Mr.Samniang Suttara B.Eng. (Civil), M.Eng. (Survey) Topcon Instruments (Thailand) Co.,Ltd. Tel Satellite Surveying.
An RFI Mitigation Strategy for the Allen Telescope Array Geoffrey C. Bower UC Berkeley.
Modern Navigation Thomas Herring MW 11:00-12:30 Room A
OC3522Summer 2001 OC Remote Sensing of the Atmosphere and Ocean - Summer 2001 Active Microwave Radar.
Satellite Altimetry - possibilities and limitations
WATER LEVEL MONITORING USING THE INTERFERENCE PATTERN GNSS-R TECHNIQUE § Remote Sensing Lab, Dept. TSC, Building D3, Universitat Politècnica de Catalunya,
Intro to GIS Spring  GPS = Global Positioning System  GNSS = Global Navigation Satellite Systems  Satellite based technologies that give location.
By Andrew Y.T. Kudowor, Ph.D. Lecture Presented at San Jacinto College.
Claudinei Rodrigues de Aguiar Federal University of Technology - Parana Paulo de Oliveira Camargo São Paulo State University.
NAVSTAR GPS Mike Mickelson KD8DZ 08 Dec GPS BASICS.
Introduction to the Global Positioning System Introduction to the Global Positioning System GPS.
CRGIS Global Positioning Systems The Basics CRGIS National Park Service.
Making good from bad: Can we use GPS multipath to measure soil moisture? Kristine M. Larson Department of Aerospace Engineering Sciences University of.
GPS: Everything you wanted to know, but were afraid to ask Andria Bilich National Geodetic Survey.
Wireless Communication Fundamentals David Holmer
N. Pierdicca 1, L. Guerriero 2, R. Giusto 1, M. Brogioni 3, A. Egido 4, N. Floury 5 1 DIET - Sapienza Univ. of Rome, Rome, Italy 2 DISP - University of.
CCAR / University of Colorado 1 Airborne GPS Bistatic Radar in CLPX Dallas Masters University of Colorado, Boulder Valery Zavorotny NOAA ETL Stephen Katzberg.
EE 495 Modern Navigation Systems
Analyzing the Effect of Interference in GNSS Scintillation Monitoring Rodrigo Romero Politecnico di Torino 11th European Space.
Goldstone Radar Support for LCROSS Evaluation of Impact Sites Martin Slade October 16, 2006 National Aeronautics and Space Administration Jet Propulsion.
Principles of the Global Positioning System Lecture 08 Prof. Thomas Herring Room ;
An intro about wimax and gps. INTRODUCTION WiMAX, the Worldwide Interoperability for Microwave Access, is a telecommunications technology that provides.
Mapping Technology and Topographic Maps Chapter 1, Lesson 3 and 4.
Active Remote Sensing for Elevation Mapping
SCM x330 Ocean Discovery through Technology Area F GE.
Antenna Arrays and Automotive Applications
Signal Propagation Basics
GPS snow sensing: results from the EarthScope Plate Boundary Observatory Kristine Larson, Felipe Nievinski Department of Aerospace Engineering Sciences.
Eeng360 1 Chapter 1 INTRODUCTION  Propagation of Electromagnetic Waves  Information Measure  Channel Capacity and Ideal Communication Systems Huseyin.
Geodesy & Crustal Deformation
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Signal Propagation Basics
Radio Coverage Prediction in Picocell Indoor Networks
Images of Earths Surface
Applied Geophysics Fall 2016 Umass Lowell
Presentation transcript:

Simulations and exploitation of GNSS-R signals from a 60-meter lighthouse for applications in surface hydrology processes Nicolas ROUSSEL Laurent LESTARQUIT PhD advisers: Guillaume RAMILLIEN, Frédéric FRAPPART 04/05 novembre 2013

2 Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 4/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 34/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

 Ground configuration  Embedded configuration Direct/reflected signals correlation  Position of the specular reflection point  Altimetry  Properties of the reflection surface (roughness) Source : Institut de Ciències de l’Espai ( Introduction Introduction Simulations Field measurements 44/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

- 60 m - Introduction Introduction Simulations Field measurements  The Cordouan Lighthouse (45°35’11’’N ; 1°10’24’’O) 54/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 64/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

 Modeling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth, based on real ephemeris  Determine the potential of GNSS-R for mapping the characteristics of the reflecting surface  Explore different configurations of performing measurements and instrument installations:  variations in the reflectometer height, mask effects due to the terrain, satellites geometry,... Simulator development Simulations Introduction Simulations Field measurements 74/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

84/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT  Determination of the position of the specular reflection points: 3 algorithms -Approximation of the Earth into a local sphere -Approximation of the Earth into a local ellipsoid -DEM (Digital Elevation Model) integration Correctness Computation speed Gnu R For further information : Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments, submitted in Geosciences Model Development N. Roussel, F. Frappart, G. Ramillien, C. Desjardins, P. Gegout, F. Pérosanz, R. Biancale Simulations Introduction Simulations Field measurements

94/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT Simulations Introduction Simulations Field measurements

Simulator outputs  Simulations on the Cordouan lighthouse (45°35’11’’N ; 1°10’24’’O) Simulations Introduction Simulations Field measurements 104/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Simulations over a week Simulations Introduction Simulations Field measurements 114/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Simulations over a week Simulations Introduction Simulations Field measurements 124/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

 Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 134/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT Plan Introduction Simulations Field measurements

14 Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 4/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

SILICOM Data-Logger Data Logger  records and time tags a wide choice of supported RF GNSS signals  makes possible the characterization of the reflected signal and the development of algorithms for processing the GNSS-R signals. SILICOM Data-logger Introduction Simulations Field measurements 154/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

31 st may 2013 campaign Data Logger  to collect GNSS-R signals, receiving the direct signal via a RHCP zenith-looking antenna, and the reflected signal via a LHCP nadir-looking antenna Approx. 25 min of acquisitions, 25 MHz, 8 bits SILICOM Data-logger Introduction Simulations Field measurements 164/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Acquisition  1 ms  Doppler : [-5000:1:5000] Hz  Detection of 6 satellites : -PRN12 -PRN15 -PRN17 -PRN24 -PRN25 -PRN26 In agreement with the simulations SILICOM Data-logger Introduction Simulations Field measurements 174/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Acquisition Reflected signal Direct signal PRN15 exemple : detection of the initial doppler SILICOM Data-logger Introduction Simulations Field measurements 184/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Acquisition Reflected signal Direct signal PRN15 exemple : detection of the initial delay SILICOM Data-logger Introduction Simulations Field measurements 194/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Correlation function Reflected signal Direct signal SILICOM Data-logger Introduction Simulations Field measurements 1 ms 100 ms 204/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Correlation function SILICOM Data-logger Introduction Simulations Field measurements Reflected signal Direct signal 1 ms 100 ms 214/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

Delay-Doppler Maps SILICOM Data-logger Introduction Simulations Field measurements 244/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT Ce sont des GIFS animés ! - 

Tracking SILICOM Data-logger Introduction Simulations Field measurements 234/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT Differences between direct and reflected paths – C/A PRN12 Time (s) Distance (m)

Tracking Direct signal Satellite NumReceiver height h (m) PRN1257,47 PRN1560,47 PRN1757,75 PRN2461,98 PRN2561,66 PRN2659,46 Mean59,80 ± 1,92 SILICOM Data-logger Introduction Simulations Field measurements 234/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

25 Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 4/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

26 Plan Introduction Simulations Field measurements  Introduction  Simulations  Field measurements  GNSS-based tide gauge system with SILICOM datalogger  Analysis of signal-to-noise ratio (SNR) series 4/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

phase difference between the direct signal and the reflected signal (multipath) Direct signal amplitude Multipath amplitude x = sin θ : SNR data Introduction Simulations Field measurements Larson et al., GPS Sol., /5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

SNR data Introduction Simulations Field measurements L2 SNR data 2 nd order polynom 284/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT

SNR data Introduction Simulations Field measurements 294/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT L2 SNR data 0 – 40° elevation filtration

SNR data Introduction Simulations Field measurements L2 SNR data 304/5 November 2013Space Reflecto – Nicolas ROUSSEL / Laurent LESTARQUIT  The whole 3 months time series is currently being analyzed in order to make the tide appear

Thanks for your attention !