CPS 170: Artificial Intelligence Game Theory Instructor: Vincent Conitzer.

Slides:



Advertisements
Similar presentations
CPS Extensive-form games Vincent Conitzer
Advertisements

Game Theory Assignment For all of these games, P1 chooses between the columns, and P2 chooses between the rows.
Strongly based on Slides by Vincent Conitzer of Duke
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
1 Game Theory. 2 Definitions Game theory -- formal way to analyze interactions among a group of rational agents behaving strategically Agents – players.
Chapter Twenty-Eight Game Theory. u Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents.
The basics of Game Theory Understanding strategic behaviour.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
1 Chapter 4: Minimax Equilibrium in Zero Sum Game SCIT1003 Chapter 4: Minimax Equilibrium in Zero Sum Game Prof. Tsang.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
EC3224 Autumn Lecture #04 Mixed-Strategy Equilibrium
 1. Introduction to game theory and its solutions.  2. Relate Cryptography with game theory problem by introducing an example.  3. Open questions and.
General-sum games You could still play a minimax strategy in general- sum games –I.e., pretend that the opponent is only trying to hurt you But this is.
Extensive-form games. Extensive-form games with perfect information Player 1 Player 2 Player 1 2, 45, 33, 2 1, 00, 5 Players do not move simultaneously.
ECO290E: Game Theory Lecture 4 Applications in Industrial Organization.
Economics 202: Intermediate Microeconomic Theory 1.HW #6 on website. Due Thursday. 2.No new reading for Thursday, should be done with Ch 8, up to page.
An Introduction to Game Theory Part I: Strategic Games
Vincent Conitzer CPS Normal-form games Vincent Conitzer
Chapter 6 © 2006 Thomson Learning/South-Western Game Theory.
Nash Equilibrium: Theory. Strategic or Simultaneous-move Games Definition: A simultaneous-move game consists of: A set of players For each player, a set.
Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis
by Vincent Conitzer of Duke
Check your (Mis)understanding? Number 3.5 page 79 Answer Key claims that: For player 1 a strictly dominates c For player 2, y strictly dominates w and.
A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes, “You can’t outrun a bear,” scoffs the camper. His.
Game-Theoretic Approaches to Multi-Agent Systems Bernhard Nebel.
Complexity Results about Nash Equilibria
An Introduction to Game Theory Part II: Mixed and Correlated Strategies Bernhard Nebel.
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
This Wednesday Dan Bryce will be hosting Mike Goodrich from BYU. Mike is going to give a talk during :30 to 12:20 in Main 117 on his work on UAVs.
Review: Game theory Dominant strategy Nash equilibrium
Chapter Twenty-Eight Game Theory. u Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents.
Game Applications Chapter 29. Nash Equilibrium In any Nash equilibrium (NE) each player chooses a “best” response to the choices made by all of the other.
EC941 - Game Theory Francesco Squintani Lecture 3 1.
Today: Some classic games in game theory
Minimax strategies, Nash equilibria, correlated equilibria Vincent Conitzer
CPS Learning in games Vincent Conitzer
Vincent Conitzer CPS Game Theory Vincent Conitzer
Risk attitudes, normal-form games, dominance, iterated dominance Vincent Conitzer
Nash equilibrium Nash equilibrium is defined in terms of strategies, not payoffs Every player is best responding simultaneously (everyone optimizes) This.
CPS LP and IP in Game theory (Normal-form Games, Nash Equilibria and Stackelberg Games) Joshua Letchford.
Extensive-form games Vincent Conitzer
Worlds with many intelligent agents An important consideration in AI, as well as games, distributed systems and networking, economics, sociology, political.
Game Theory Robin Burke GAM 224 Spring Outline Admin Game Theory Utility theory Zero-sum and non-zero sum games Decision Trees Degenerate strategies.
THE “CLASSIC” 2 x 2 SIMULTANEOUS CHOICE GAMES Topic #4.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Introduction Giovanni Neglia.
The Science of Networks 6.1 Today’s topics Game Theory Normal-form games Dominating strategies Nash equilibria Acknowledgements Vincent Conitzer, Michael.
CPS 270: Artificial Intelligence Game Theory Instructor: Vincent Conitzer.
Lecture 5 Introduction to Game theory. What is game theory? Game theory studies situations where players have strategic interactions; the payoff that.
CPS LP and IP in Game theory (Normal-form Games, Nash Equilibria and Stackelberg Games) Joshua Letchford.
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Strategic Behavior in Business and Econ Static Games of complete information: Dominant Strategies and Nash Equilibrium in pure and mixed strategies.
CPS 570: Artificial Intelligence Game Theory Instructor: Vincent Conitzer.
CPS Utility theory, normal-form games
Vincent Conitzer CPS Learning in games Vincent Conitzer
Choose one of the numbers below. You will get 1 point if your number is the closest number to 3/4 of the average of the numbers chosen by all class members,
Lec 23 Chapter 28 Game Theory.
Games, Strategies, and Decision Making By Joseph Harrington, Jr. First Edition Chapter 4: Stable Play: Nash Equilibria in Discrete Games with Two or Three.
1 Fahiem Bacchus, University of Toronto CSC384: Intro to Artificial Intelligence Game Tree Search I ● Readings ■ Chapter 6.1, 6.2, 6.3, 6.6 ● Announcements:
Game theory basics A Game describes situations of strategic interaction, where the payoff for one agent depends on its own actions as well as on the actions.
Simultaneous Move Games: Discrete Strategies
CPS 570: Artificial Intelligence Game Theory
Vincent Conitzer Normal-form games Vincent Conitzer
CPS 173 Extensive-form games
Molly W. Dahl Georgetown University Econ 101 – Spring 2009
Lecture Game Theory.
Instructor: Vincent Conitzer
Introduction to Game Theory
Game theory review for agent design tutorial
Presentation transcript:

CPS 170: Artificial Intelligence Game Theory Instructor: Vincent Conitzer

What is game theory? Game theory studies settings where multiple parties (agents) each have –different preferences (utility functions), –different actions that they can take Each agent’s utility (potentially) depends on all agents’ actions –What is optimal for one agent depends on what other agents do Very circular! Game theory studies how agents can rationally form beliefs over what other agents will do, and (hence) how agents should act –Useful for acting as well as predicting behavior of others

Penalty kick example probability.7 probability.3 probability.6 probability.4 probability 1 Is this a “rational” outcome? If not, what is? action

Rock-paper-scissors 0, 0-1, 11, -1 0, 0-1, 1 1, -10, 0 Row player aka. player 1 chooses a row Column player aka. player 2 (simultaneously) chooses a column A row or column is called an action or (pure) strategy Row player’s utility is always listed first, column player’s second Zero-sum game: the utilities in each entry sum to 0 (or a constant) Three-player game would be a 3D table with 3 utilities per entry, etc.

A poker-like game 1 gets King1 gets Jack bet stay callfoldcallfoldcallfoldcallfold “nature” player 1 player , 0 1, -1.5, , -1.50, 01, ,.5 1, -1 0, 01, -10, 01, -1 cccffcff bb sb ss bs

“Chicken” 0, 0-1, 1 1, -1-5, -5 D S DS S D D S Two players drive cars towards each other If one player goes straight, that player wins If both go straight, they both die not zero-sum

Rock-paper-scissors – Seinfeld variant 0, 01, -1 -1, 10, 0-1, 1 1, -10, 0 MICKEY: All right, rock beats paper! (Mickey smacks Kramer's hand for losing) KRAMER: I thought paper covered rock. MICKEY: Nah, rock flies right through paper. KRAMER: What beats rock? MICKEY: (looks at hand) Nothing beats rock.

Dominance Player i’s strategy s i strictly dominates s i ’ if –for any s -i, u i (s i, s -i ) > u i (s i ’, s -i ) s i weakly dominates s i ’ if –for any s -i, u i (s i, s -i ) ≥ u i (s i ’, s -i ); and –for some s -i, u i (s i, s -i ) > u i (s i ’, s -i ) 0, 01, -1 -1, 10, 0-1, 1 1, -10, 0 strict dominance weak dominance -i = “the player(s) other than i”

Prisoner’s Dilemma -2, -20, -3 -3, 0-1, -1 confess Pair of criminals has been caught District attorney has evidence to convict them of a minor crime (1 year in jail); knows that they committed a major crime together (3 years in jail) but cannot prove it Offers them a deal: –If both confess to the major crime, they each get a 1 year reduction –If only one confesses, that one gets 3 years reduction don’t confess confess

“Should I buy an SUV?” -10, -10-7, , -7-8, -8 cost: 5 cost: 3 cost: 5 cost: 8cost: 2 purchasing + gas cost accident cost

A poker-like game 1 gets King1 gets Jack bet stay callfoldcallfoldcallfoldcallfold “nature” player 1 player , 0 1, -1.5, , -1.50, 01, ,.5 1, -1 0, 01, -10, 01, -1 cccffcff bb sb ss bs

“2/3 of the average” game Everyone writes down a number between 0 and 100 Person closest to 2/3 of the average wins Example: –A says 50 –B says 10 –C says 90 –Average(50, 10, 90) = 50 –2/3 of average = –A is closest (| | = 16.67), so A wins

Iterated dominance Iterated dominance: remove (strictly/weakly) dominated strategy, repeat Iterated strict dominance on Seinfeld’s RPS: 0, 01, -1 -1, 10, 0-1, 1 1, -10, 0 1, -1 -1, 10, 0

Iterated dominance: path (in)dependence 0, 10, 0 1, 0 0, 00, 1 Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed) 0, 10, 0 1, 0 0, 00, 1 0, 0 1, 0 0, 00, 1 Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)

“2/3 of the average” game revisited (2/3)*100 (2/3)*(2/3)*100 … dominated dominated after removal of (originally) dominated strategies

Mixed strategies Mixed strategy for player i = probability distribution over player i’s (pure) strategies E.g. 1/3, 1/3, 1/3 Example of dominance by a mixed strategy: 3, 00, 0 3, 0 1, 0 1/2

Checking for dominance by mixed strategies Linear program for checking whether strategy s i * is strictly dominated by a mixed strategy: maximize ε such that: –for any s -i, Σ s i p s i u i (s i, s -i ) ≥ u i (s i *, s -i ) + ε –Σ s i p s i = 1 Linear program for checking whether strategy s i * is weakly dominated by a mixed strategy: maximize Σ s -i (Σ s i p s i u i (s i, s -i )) - u i (s i *, s -i ) such that: –for any s -i, Σ s i p s i u i (s i, s -i ) ≥ u i (s i *, s -i ) –Σ s i p s i = 1

Nash equilibrium [Nash 50] A vector of strategies (one for each player) is called a strategy profile A strategy profile (σ 1, σ 2, …, σ n ) is a Nash equilibrium if each σ i is a best response to σ -i –That is, for any i, for any σ i ’, u i (σ i, σ -i ) ≥ u i (σ i ’, σ -i ) Note that this does not say anything about multiple agents changing their strategies at the same time In any (finite) game, at least one Nash equilibrium (possibly using mixed strategies) exists [Nash 50] (Note - singular: equilibrium, plural: equilibria)

Nash equilibria of “chicken” 0, 0-1, 1 1, -1-5, -5 D S DS S D D S (D, S) and (S, D) are Nash equilibria –They are pure-strategy Nash equilibria: nobody randomizes –They are also strict Nash equilibria: changing your strategy will make you strictly worse off No other pure-strategy Nash equilibria

Rock-paper-scissors 0, 0-1, 11, -1 0, 0-1, 1 1, -10, 0 Any pure-strategy Nash equilibria? But it has a mixed-strategy Nash equilibrium: Both players put probability 1/3 on each action If the other player does this, every action will give you expected utility 0 –Might as well randomize

Nash equilibria of “chicken”… 0, 0-1, 1 1, -1-5, -5 D S DS Is there a Nash equilibrium that uses mixed strategies? Say, where player 1 uses a mixed strategy? If a mixed strategy is a best response, then all of the pure strategies that it randomizes over must also be best responses So we need to make player 1 indifferent between D and S Player 1’s utility for playing D = -p c S Player 1’s utility for playing S = p c D - 5p c S = 1 - 6p c S So we need -p c S = 1 - 6p c S which means p c S = 1/5 Then, player 2 needs to be indifferent as well Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S)) –People may die! Expected utility -1/5 for each player

The presentation game Pay attention (A) Do not pay attention (NA) Put effort into presentation (E) Do not put effort into presentation (NE) 4, 4-16, -14 0, -20, 0 Presenter Audience Pure-strategy Nash equilibria: (A, E), (NA, NE) Mixed-strategy Nash equilibrium: ((1/10 A, 9/10 NA), (4/5 E, 1/5 NE)) –Utility 0 for audience, -14/10 for presenter –Can see that some equilibria are strictly better for both players than other equilibria, i.e. some equilibria Pareto-dominate other equilibria

A poker-like game 1 gets King1 gets Jack bet stay callfoldcallfoldcallfoldcallfold “nature” player 1 player , 0 1, -1.5, , -1.50, 01, ,.5 1, -1 0, 01, -10, 01, -1 cccffcff bb sb ss bs 2/3 1/3 2/3 To make player 1 indifferent between bb and bs, we need: utility for bb = 0*P(cc)+1*(1-P(cc)) =.5*P(cc)+0*(1-P(cc)) = utility for bs That is, P(cc) = 2/3 To make player 2 indifferent between cc and fc, we need: utility for cc = 0*P(bb)+(-.5)*(1-P(bb)) = -1*P(bb)+0*(1-P(bb)) = utility for fc That is, P(bb) = 1/3