Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB ECE 366 Computer Architecture Lecture 1-2 Shantanu Dutt (http://www.ece.uic.edu/~dutt) Adapted from (with adds.

Slides:



Advertisements
Similar presentations
CEG3420 L1 Intro.1 Copyright (C) 1998 UCB CEG3420 Computer Design Lecture 1 Philip Leong.
Advertisements

CpE442 Intro. To Computer Architecture CpE 442 Introduction To Computer Architecture Lecture 1 Instructor: H. H. Ammar These slides are based on the lecture.
CSE431 L01 Introduction.1Irwin, PSU, 2005 CSE 431 Computer Architecture Fall 2005 Lecture 01: Introduction Mary Jane Irwin ( )
CPSC 321 Computer Architecture Fall 2006 Lecture 1 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Copyright.
CMSC411/Computer Architecture These slides and all associated material are © 2003 by J. Six and are available only for students enrolled in CMSC411. Introduction.
CPSC 321 Computer Architecture Spring 2005 Lecture 1 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Adapted.
EEM 486 EEM 486: Computer Architecture Lecture 1 Course Introduction and the Five Components of a Computer.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB CS152 Computer Architecture and Engineering Lecture 1 August 27, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson)
מבנה מחשבים הרצאה 1 מבנה מחשבים Lecture 1 Course Introduction Eytan Ruppin and Alon Schclar Slides from Randy H. Katz, John Wawrzynek and Dan Garcia Berkeley.
ENEE350 Spring07 1 Ankur Srivastava University of Maryland, College Park Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005.”
CS152 / Kubiatowicz Lec1.1 ©UCB Spring 20011/16/01 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
מבנה מחשבים הרצאה 1 מבנה מחשבים Lecture 1 Course Introduction Yehuda Afek and Yossi Matias Slides from Randy H. Katz, and John Wawrzynek Berkeley.
ECE 232 L2 Basics.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 2 Computer.
CS472 COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE –Bruce D’Ambrosio Dearborn, –Text: Computer Organization and Design.
1  2004 Morgan Kaufmann Publishers Lectures for 3rd Edition Note: these lectures are often supplemented with other materials and also problems from the.
CS152 / Kubiatowicz Lec1.1 ©UCB Fall 20018/29/01 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer August.
CPEN Digital System Design Chapter 10 – Instruction SET Architecture (ISA) © Logic and Computer Design Fundamentals, 4 rd Ed., Mano Prentice Hall.
CS / Schlesinger Lec1.1 1/20/99©UCB Spring 1999 Computer Architecture Lecture 1 Introduction and Five Components of a Computer Spring, 1999 Arie Schlesinger.
1 CSE SUNY New Paltz Chapter 1 Introduction CSE-45432Introduction to Computer Architecture Dr. Izadi.
CIS 314 : Computer Organization Lecture 1 – Introduction.
ELEN 350 Computer Architecture Spring 2005 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Adapted from CPSC.
CS152 / Kubiatowicz Lec1.1 1/20/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
CS152 / Kubiatowicz Lec1.1 ©UCB Fall 19998/23/99 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer August.
ECE 232 L1 Intro.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 1 Introduction.
CS152 / Spring 2002 Lec1.1 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
CENG311 Computer Architecture Kayhan Erciyes. CS231 Assembly language and Digital Circuits Instructor:Kayhan Erciyes Office:
CpE442 Intro. To Computer Architecture CpE 442 Introduction To Computer Architecture Lecture 1 Instructor: H. H. Ammar These slides are based on the lecture.
Summary: Computer System Components Proc Caches Busses Memory I/O Devices: Controllers adapters Disks Displays Keyboards Networks.
Digital Systems Design L01 Introduction.1 Digital Systems Design Lecture 01: Introduction Adapted from: Mary Jane Irwin ( )
Compsci Today’s topics l Binary Numbers  Brookshear l Computer Architecture  Notes from David A. Patterson and John L. Hennessy, Computer.
ECE 4436ECE 5367 Introduction to Computer Architecture and Design Ji Chen Section : T TH 1:00PM – 2:30PM Prerequisites: ECE 4436.
Computer Architecture ECE 4801 Berk Sunar Erkay Savas.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB What is “Computer Architecture” Computer Architecture = Instruction Set Architecture + Machine Organization.
Patterson Fall 97 ©UCB CS/EE 362 Hardware Fundamentals Lecture 8 (Chapter 1: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
International Technology University CEN 951 Computer Architecture Lecture 2 Five Components of a Computer.
COMP3221 lec04--prog-model.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 4: Programmer’s Model of Microprocessors
Computer Organization and Design Computer Abstractions and Technology
Computer Architecture Mehran Rezaei
CS35101 Computer Architecture Spring 2006 Week 1 Slides adapted from: Mary Jane Irwin ( Course url:
Cps-104 Intro.1 ©GK Spring 1999 CPS104 Computer Organization Lecture 1 January 14, 1999 Gershon Kedem Slides available on:
CS152 / Fall 2002 Lec 1.1 Computer Organization Lecture 1 Course Introduction and the Five Components of a Computer Modified From the Lectures of Randy.
Computer System Design Lecture 1 Wannarat Suntiamorntut.
Texas A&M University Department of Computer Science CPSC 321 Computer Architecture Introduction to Course and Five Components of a Computer Instructor.
Computer Organization & Assembly Language © by DR. M. Amer.
Introduction to Computer Organization
by Computer System Design Lecture 1 Wannarat Suntiamorntut
Computer Architecture CPSC 350
CMCS Computer Architecture Lecture 1 Introduction and Overview January 29, CMSC411.htm Mohamed Younis.
 Lecture 2 Processor Organization  Control needs to have the  Ability to fetch instructions from memory  Logic and means to control instruction sequencing.
CPSC 321 Computer Architecture Summer 2005 Lecture 1 Introduction and Five Components of a Computer Praveen Bhojwani Adapted from CS 152 Spring 2002 UC.
S.J.Lee 1 컴퓨터 구조 강좌개요 순천향대학교 컴퓨터학부 이 상 정. S.J.Lee 2 교 재교 재 J.L.Hennessy & D.A.Patterson Computer Architecture a Quantitative Approach, Second Edition.
1 chapter 1 Computer Architecture and Design ECE4480/5480 Computer Architecture and Design Department of Electrical and Computer Engineering University.
Lecture 1: Computer Architecture and Technology Professor Mike Schulte Computer Architecture ECE 201.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO CS 219 Computer Organization.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 2 Computer Organization.
CSIE30300 Computer Architecture Unit 01: Introduction Hsin-Chou Chi [Adapted from material by and
Compsci Today’s topics l Operating Systems  Brookshear, Chapter 3  Great Ideas, Chapter 10  Slides from Kevin Wayne’s COS 126 course l Performance.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB CS152 Computer Architecture and Engineering Lecture 1 August 27, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson)
1 TM 1 Embedded Systems Lab./Honam University ARM Microprocessor Programming Model.
1 CHAPTER 1 COMPUTER ABSTRACTIONS AND TECHNOLOGY Parts of these notes have been adapter from those of Prof. Professor Mike Schulte, Prof. D. Patterson,
CSE431 L01 Introduction.1Irwin, PSU, 2005 CSE 431 Computer Architecture Fall 2005 Lecture 01: Introduction Mary Jane Irwin ( )
By Wannarat Computer System Design Lecture 1 Wannarat Suntiamorntut.
CS4100: 計算機結構 Course Outline 國立清華大學資訊工程學系 九十九年度第二學期.
CpE 442 Introduction To Computer Architecture Lecture 1
Chapter 1 Computer Abstractions and Technology
Computer Architecture and Organization
Computer Architecture CSCE 350
Welcome to Architectures of Digital Systems
CS4100: 計算機結構 Course Outline
Computer Architecture
Presentation transcript:

cs 152 L1 Intro.1 Patterson Fall 97 ©UCB ECE 366 Computer Architecture Lecture 1-2 Shantanu Dutt ( Adapted from (with adds and deletes): CS152 Computer Architecture and Engineering Lecture 1 August 27, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides:

cs 152 L1 Intro.2 Patterson Fall 97 ©UCB Overview °Intro to Computer Architecture °Administrative Matters °Course Style, Philosophy and Structure °Organization and Anatomy of a Computer

cs 152 L1 Intro.3 Patterson Fall 97 ©UCB What is “Computer Architecture” Computer Architecture = Instruction Set Architecture + Machine Organization

cs 152 L1 Intro.4 Patterson Fall 97 ©UCB Instruction Set Architecture (subset of Computer Arch.)... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation. – Amdahl, Blaaw, and Brooks, 1964SOFTWARE -- Organization of Programmable Storage -- Data Types & Data Structures: Encodings & Representations -- Instruction Set -- Instruction Formats -- Modes of Addressing and Accessing Data Items and Instructions -- Exceptional Conditions

cs 152 L1 Intro.5 Patterson Fall 97 ©UCB The Instruction Set: a Critical Interface instruction set software hardware

cs 152 L1 Intro.6 Patterson Fall 97 ©UCB Example ISAs (Instruction Set Architectures) °Digital Alpha(v1, v3) °HP PA-RISC(v1.1, v2.0) °Sun Sparc(v8, v9) °SGI MIPS(MIPS I, II, III, IV, V) °Intel(8086,80286,80386, ,Pentium, MMX,...)

cs 152 L1 Intro.7 Patterson Fall 97 ©UCB MIPS R3000 Instruction Set Architecture (Summary) °Instruction Categories Load/Store Computational Jump and Branch Floating Point -coprocessor Memory Management Special R0 - R31 PC HI LO OP rs rt rdsafunct rs rt immediate jump target 3 Instruction Formats: all 32 bits wide Registers Q: How many already familiar with MIPS ISA?

cs 152 L1 Intro.8 Patterson Fall 97 ©UCB Organization Logic Designer's View ISA Level FUs & Interconnect °Capabilities & Performance Characteristics of Principal Functional Units (FUs) (e.g., Registers, ALU, Shifters, Logic Units,...) ° Advanced design and analysis of FUs for opt. (speed, power) °Ways in which these components are interconnected °Information flows between components °Logic and means by which such information flow is controlled. °Choreography of FUs to realize the ISA °Register Transfer Level (RTL) Description

cs 152 L1 Intro.9 Patterson Fall 97 ©UCB Example Organization °TI SuperSPARC tm TMS390Z50 in Sun SPARCstation20 Floating-point Unit Integer Unit Inst Cache Ref MMU Data Cache Store Buffer Bus Interface SuperSPARC L2 $ CC MBus Module MBus L64852 MBus control M-S Adapter SBus DRAM Controller SBus DMA SCSI Ethernet STDIO serial kbd mouse audio RTC Boot PROM Floppy SBus Cards

cs 152 L1 Intro.10 Patterson Fall 97 ©UCB What is “Computer Architecture”? I/O systemInstr. Set Proc. Compiler Operating System Application Digital Design Circuit Design Instruction Set Architecture Firmware °Coordination of many levels of abstraction (mainly within the oval; NOTE: Arithmetic ckts fall into both architecture and digital design). °Under a rapidly changing set of forces °Design, Measurement, and Evaluation Datapath & Control Layout

cs 152 L1 Intro.11 Patterson Fall 97 ©UCB Forces on Computer Architecture Computer Architecture Technology Programming Languages Operating Systems History Applications

cs 152 L1 Intro.12 Patterson Fall 97 ©UCB Technology °In ~1985 the single-chip processor (32-bit) and the single-board computer emerged => workstations, personal computers, multiprocessors have been riding this wave since °In the timeframe, these may well look like mainframes compared single-chip computer (maybe 2 chips) DRAM YearSize Kb Kb Mb Mb Mb Mb Mb Gb Microprocessor Logic DensityDRAM chip capacity

cs 152 L1 Intro.13 Patterson Fall 97 ©UCB Technology => dramatic change °Processor logic capacity: about 30% per year clock rate: about 20% per year So… advanced functions (e.g., multimedia functions in some Pentiums) and high-speed features (multiple pipelines, larger caches) °Memory DRAM capacity: about 60% per year (4x every 3 years) Memory speed: about 10% per year Cost per bit: improves about 25% per year So… larger memory => more challenging applications (e.g., atmospheric modeling, astrophysics modeling) °Disk capacity: about 60% per year So … huge disk capacities => large data storage (video, music files, large data for various applications)

cs 152 L1 Intro.14 Patterson Fall 97 ©UCB Performance Trends Microprocessors Minicomputers Mainframes Supercomputers 1995 Year Log of Performance

cs 152 L1 Intro.15 Patterson Fall 97 ©UCB Processor Performance (SPEC) RISC introduction Did RISC win the technology battle and lose the market war? performance now improves ­ 50% per year (2x every 1.5 years)

cs 152 L1 Intro.16 Patterson Fall 97 ©UCB Applications and Languages °CAD, CAM, CAE,... °Lotus, DOS,... °Multimedia,... °The Web,... °JAVA,... °Large Scientific Computations °???

cs 152 L1 Intro.17 Patterson Fall 97 ©UCB Measurement and Evaluation Architecture is an iterative process -- searching the space of possible designs -- at all levels of computer systems Good Ideas Mediocre Ideas Bad Ideas Cost / Performance Analysis Design Analysis Creativity

cs 152 L1 Intro.18 Patterson Fall 97 ©UCB Why do Computer Architecture? °CHANGE °It’s exciting! °It has never been more exciting! °It impacts every other aspect of electrical engineering and computer science

cs 152 L1 Intro.19 Patterson Fall 97 ©UCB ECE 366: Course Content Computer Architecture -Instruction Set -Computer Organization -Hardware Components (Basic & Adv.) -Hierarchy of Components -Interfaces bet. Components -Data and Control Flow -Logic Designer’s View (FSM, Arithmetic Ckts, Impl.) ­ “Building Architect” & “Construction Engineer”

cs 152 L1 Intro.20 Patterson Fall 97 ©UCB CE 366: So what's in it for me? °In-depth understanding of the inner-workings of modern computers, their evolution, and trade-offs present at the hardware/software boundary. Insight into fast/slow operations that are easy/hard to implementation hardware °Experience with the design process in the context of a large complex (hardware) design. Functional Spec --> Control & Datapath --> Physical implementation

cs 152 L1 Intro.21 Patterson Fall 97 ©UCB My Goal °Show you how to understand modern computer architecture in its rapidly changing form. °Show you how to design by leading you through the process on challenging design problems °Show you how and why (rationale) of designs--v. important °Hopefully, be able to guide you to think about and analyze designs and alternatives °so... ask questions come to office hours go back and fully understand past lectures be prepared for the next lecture...

cs 152 L1 Intro.22 Patterson Fall 97 ©UCB Grading °Grade breakdown Final Exam: 40% Midterm Exam20% CU Design Projects:20% Homework Assignments20% °No late homeworks or projects: °Grade deterination around average grade will be a B at least half to one-third std-devn above average will be A set expectations accordingly

cs 152 L1 Intro.23 Patterson Fall 97 ©UCB Course Problems °Can’t make midterm only for before-the-fact demonstrable emergency °Forgot to turn in homework/ Dog ate computer need to be fair to the other students; no late hws °What is cheating? Studying together in groups is encouraged Work must be your own Common examples of cheating: running out of time on a assignment and then pick up output, take homework from box and copy, person asks to borrow solution “just to take a look”, copying an exam question,... Better off to do the assignment for your own understanding Cheating on assignment, projects will be seriously detrimental to your understanding of material and thus on your midterm & final exam performance Plus penalties Do not do it; it is unethical, dishonest and not good for anyone, the perpetrator in particular

cs 152 L1 Intro.24 Patterson Fall 97 ©UCB Class decides on penalties for cheating; staff enforces °HWs: 0 for problem 0 for homework assignment subtract full value for assignment subtract 2X full value for assignment °Projects (groups: only penalize individuals?) 0 for problem 0 for homework assignment subtract full value for assignment subtract 2X full value for assignment °Exams 0 for problem 0 for exam

cs 152 L1 Intro.25 Patterson Fall 97 ©UCB Things We Hope You Will Learn fromProjects °Keep it simple and make it work Fully test everything individually and then together Retest everything whenever you make any changes Last minute changes are big “no nos” °Group dynamics. Communication is the key to success: Be open with others of your expectations and your problems Everybody should be there on design meetings when key decisions are made and jobs are assigned °Planning is very important: Promise what you can deliver; deliver more you promise Murphy’s Law: things DO break at the last minute -Don’t make your plan based on the best case scenarios -Freeze you design and don’t make last minute changes °Never give up! It is not over until you give up.

cs 152 L1 Intro.26 Patterson Fall 97 ©UCB What you should know from prereqs (see syllabus) °Read and write basic C programs °Read and write in an assembly language °Logic design logical equations, schematic diagrams, FSMs, components

cs 152 L1 Intro.27 Patterson Fall 97 ©UCB Levels of Representation High Level Language Program Assembly Language Program Machine Language Program Control Signal Specification Compiler Assembler Machine Interpretation temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; lw$15,0($2) lw$16,4($2) sw$16,0($2) sw$15,4($2) °°°° ALUOP[0:3] <= InstReg[9:11] & MASK

cs 152 L1 Intro.28 Patterson Fall 97 ©UCB Levels of Organization SPARCstation 20 Processor Computer Control Datapath MemoryDevices Input Output Workstation Design Target: 25% of cost on Processor 25% of cost on Memory (minimum memory size) Rest on I/O devices, power supplies, box

cs 152 L1 Intro.29 Patterson Fall 97 ©UCB Execution Cycle Instruction Fetch Instruction Decode Operand Fetch Execute Result Store Next Instruction Obtain instruction from program storage Determine required actions and instruction size Locate and obtain operand data Compute result value or status Deposit results in storage for later use Determine successor instruction; can generally be combined w/ Decode

cs 152 L1 Intro.30 Patterson Fall 97 ©UCB The SPARCstation 20 Memory Controller SIMM Bus Memory SIMMs Slot 1MBu s Slot 0MBu s MSBI Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus MBus SECMACIO Disk Tape SCSI Bus SBus Keyboard & Mouse Floppy Disk External Bus SPARCstation 20

cs 152 L1 Intro.31 Patterson Fall 97 ©UCB The Underlying Interconnect SPARCstation 20 Memory Controller SIMM Bus MSBI Processor/Mem Bus: MBus SECMACIO Standard I/O Bus: Sun’s High Speed I/O Bus: SBus Low Speed I/O Bus: External Bus SCSI Bus

cs 152 L1 Intro.32 Patterson Fall 97 ©UCB Processor and Caches SPARCstation 20 Slot 1MBu s Slot 0MBu s MBus Module External Cache DatapathRegisters Internal Cache Control Processor

cs 152 L1 Intro.33 Patterson Fall 97 ©UCB Memory SPARCstation 20 Memory Controller Memory SIMM Bus SIMM Slot 0SIMM Slot 1SIMM Slot 2SIMM Slot 3SIMM Slot 4SIMM Slot 5SIMM Slot 6SIMM Slot 7 DRAM SIMM DRAM

cs 152 L1 Intro.34 Patterson Fall 97 ©UCB Input and Output (I/O) Devices SPARCstation 20 Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus SECMACIO Disk Tape SCSI Bus SBus Keyboard & Mouse Floppy Disk External Bus °SCSI Bus: Standard I/O Devices °SBus: High Speed I/O Devices °External Bus: Low Speed I/O Device

cs 152 L1 Intro.35 Patterson Fall 97 ©UCB Standard I/O Devices SPARCstation 20 Disk Tape SCSI Bus °SCSI = Small Computer Systems Interface °A standard interface (IBM, Apple, HP, Sun... etc.) °Computers and I/O devices communicate with each other °The hard disk is one I/O device resides on the SCSI Bus

cs 152 L1 Intro.36 Patterson Fall 97 ©UCB High Speed I/O Devices SPARCstation 20 Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus °SBus is SUN’s own high speed I/O bus °SS20 has four SBus slots where we can plug in I/O devices °Example: graphics accelerator, video adaptor,... etc. °High speed and low speed are relative terms

cs 152 L1 Intro.37 Patterson Fall 97 ©UCB Slow Speed I/O Devices SPARCstation 20 Keyboard & Mouse Floppy Disk External Bus °The are only four SBus slots in SS20--”seats” are expensive °The speed of some I/O devices is limited by human reaction time--very very slow by computer standard °Examples: Keyboard and mouse °No reason to use up one of the expensive SBus slot