Software Engineering in Computer Science Curricula 2013 (CS2013) Richard LeBlanc Seattle University
CS2013 Timeline February 2012:Strawman draft (alpha) public release –Includes: Body of Knowledge, Characteristics of Graduates March 2013:Ironman draft (beta) public release –Incorporates feedback on Strawman draft –Includes: Body of Knowledge, Characteristics of Graduates, Curricula and Course Exemplars, Professional Practice, Institutional Challenges June 30, 2013: Comment period for Ironman draft closes Fall 2013: Final report released (general availability)
CS2013 Steering Committee ACM Mehran Sahami, Chair (Stanford) Andrea Danyluk (Williams College) Sally Fincher (Univ. of Kent) Kathleen Fisher (Tufts University) Dan Grossman (Univ. of Washington) Beth Hawthorne (Union County Coll.) Randy Katz (UC Berkeley) Rich LeBlanc (Seattle University) Dave Reed (Creighton) IEEE-CS Steve Roach, Chair (U. of Texas, El Paso) Ernesto Cuadros-Vargas (Universidad Católica San Pablo, Peru) Ronald Dodge (US Military Academy) Robert France (Colorado State) Amruth Kumar (Ramapo College of NJ) Brian Robinson (ABB corporation) Remzi Seker (U. of Arkansas, Little Rock) Alfred Thompson (Microsoft) Member of SE KA Subcommittee: Tony Cowling, University of Sheffield, UK
Knowledge Areas in CS2013 AL - Algorithms and Complexity AR - Architecture and Organization CN - Computational Science DS - Discrete Structures GV - Graphics and Visual Computing HC - Human-Computer Interaction IAS - Information Assurance and Security IM - Information Management IS - Intelligent Systems NC - Networking and Communications OS - Operating Systems PBD - Platform-based Development PD - Parallel and Distributed Computing PL - Programming Languages SDF - Software Development Fundamentals SE - Software Engineering SF - System Fundamentals SP - Social and Professional Issues
Software Development Fundamentals A new "foundational" KA that includes SE topics –Content from old Programming Fundamentals, Software Engineering, and Algorithms and Complexity areas –Identifies foundational (paradigm-independent) concepts and skills (paradigms moved to Programming Languages) –Meant to be covered early –Includes a Knowledge Unit called Development Methods
Topics moved from 2001/2008 SE KA High-level topics under Development Methods: –Program comprehension –Program correctness –Simple refactoring –Modern programming environments –Debugging strategies –Documentation and programming style Greatest emphasis on correctness, including: –specifications –code reviews –several aspects of testing
Curricular Organization (Part 1) Three-tiered classification of Body of Knowledge Units –Core-Tier1: essential topics, all of which are required for any undergraduate CS program –Core-Tier2: important foundational topics, the vast majority (no less than 80%) of which should be in a CS program Still considered “Core” topics – ideally all Tier2 topics would be included in an undergraduate program, if possible Tiering allows for flexibility to locally customize curricula –Elective: additional topics that can be included to complete an undergraduate CS program Covering just “core” material is insufficient for a complete curriculum
Curricular Organization (Part 2) Knowledge Areas are not (necessarily) courses For example, introductory programming course might include: Software Development Fundamentals (key concepts) + Programming Languages (paradigm/language) + Platform (e.g., mobile devices or robots)
Curricular Organization (Part 3) Guidance provided on depth of coverage for learning outcomes in each Knowledge Area –3 levels of depth: Familiarity, Usage, and Assessment –Familiarity: know what it means –Usage: can apply concept (e.g., write the code to use it) –Assessment: can compare/contrast/select appropriate method/strategy for different situations
The Software Engineering Knowledge Area Software engineering is the discipline concerned with the application of theory, knowledge, and practice to effectively and efficiently build reliable software systems that satisfy the requirements of customers and users. This discipline is applicable to small, medium, and large-scale systems… Core Tier-1 hours Core Tier-2 hours Includes electives? SE/Software Processes21Y SE/Software Project Management2Y SE/Tools and Environments2N SE/Requirements Engineering13Y SE/Software Design35Y SE/Software Construction2Y SE/Software Verification and Validation3Y SE/Software Evolution2Y SE. Software Engineering (6 Core-Tier1 hours, 20 Core-Tier2 hours)
Example of Knowledge Unit (Topics) SE/Software Processes [2 Core-Tier1 hour, 1 Core-Tier2 hours] Topics: [Core-Tier1] Systems level considerations, i.e., the interaction of software with its intended environment Introduction to software process models (e.g., waterfall, incremental, agile) Phases of software life-cycles Programming in the large vs. individual programming [Core-Tier2] Applying software process models [Elective] Software quality concepts Process improvement Software process capability maturity models Software process measurements …
Example KU Learning Outcomes [Core-Tier1] 1.Describe how software can interact with and participate in various systems including information management, embedded, process control, and communications systems. [Familiarity] 2.Describe the difference between principles of the waterfall model and models using iterations. [Familiarity] 3.Describe the different practices that are key components of various process model. [Familiarity] 4.Differentiate among the phases of software development. [Familiarity] 5.Describe how programming in the large differs from individual efforts with respect to understanding a large code base, code reading, understanding builds, and understanding context of changes. [Familiarity] [Core-Tier2] 1.Explain the concept of a software life cycle and provide an example, illustrating its phases including the deliverables that are produced. [Familiarity] 2.Compare several common process models with respect to their value for development of particular classes of software systems taking into account issues such as requirement stability, size, and non-functional characteristics. [Usage]
Remaining Concerns and Challenges Are there enough core hours allocated to SE? Is there sufficient emphasis on software change/ working with an existing code base/ open source software? How can we make the SE KA description (or structure) look more friendly to teaching agile processes?
Engaging the Community Website: cs2013.org –Dissemination of drafts (e.g., Strawman report) Opportunities for involvement –Comment on Body of Knowledge –Mapping exemplar courses/curricula to Body of Knowledge –Pedagogic approaches and instructional designs –Share institutional challenges (and solutions to them)
Bounding Size of Curriculum CS2013 Knowledge AreaTier1Tier2 AL-Algorithms and Complexity 199 AR-Architecture and Organization 016 CN-Computational Science 10 DS-Discrete Structures 374 GV-Graphics and Visual Computing 21 HC-Human-Computer Interaction 44 IAS-Security and Information Assurance 26 IM-Information Management 19 IS-Intelligent Systems 010 NC-Networking and Communication 37 OS-Operating Systems 411 PBD-Platform-based Development 00 PD-Parallel and Distributed Computing 510 PL-Programming Languages 820 SDF-Software Development Fundamentals 430 SE-Software Engineering 621 SF-Systems Fundamentals 189 SP-Social and Professional Issues 115 Total Core Hours All Tier1 + All Tier2 Total306 All Tier1 + 90% of Tier2 Total291.8 All Tier1 + 80% of Tier2 Total277.6
Bounding Size of Curriculum CS2013CS2008CC Knowledge AreaTier1Tier2Core LACS AL-Algorithms and Complexity AR-Architecture and Organization CN-Computational Science DS-Discrete Structures GV-Graphics and Visual Computing HC-Human-Computer Interaction IAS-Security and Information Assurance IM-Information Management IS-Intelligent Systems NC-Networking and Communication OS-Operating Systems PBD-Platform-based Development PD-Parallel and Distributed Computing PL-Programming Languages SDF-Software Development Fundamentals SE-Software Engineering SF-Systems Fundamentals SP-Social and Professional Issues Total Core Hours All Tier1 + All Tier2 Total306 All Tier1 + 90% of Tier2 Total291.8 All Tier1 + 80% of Tier2 Total277.6
Course Exemplars Name of Course, Location of Institution, Instructor, Course URL Knowledge Areas that contain topics and learning outcomes covered in the course Where does the course fit in your curriculum? What is covered in the course? (Short description, and/or a concise list of topics) What is the format of the course? (Contact hours? Lecture, lab, discussion?) How are students assessed? (Assignments: number and type, expected workload) Course textbooks and materials Why do you teach the course this way? (Course rationale and goals) Body of Knowledge coverage Additional topics/comments Knowledge AreaTotal Hours of Coverage Name (e.g., Systems Fundamentals (SF))Number KAKnowledge UnitTopics CoveredHours XYFull name of KUNum