Wednesday, Oct. 20, 2010PHYS 1441-002, Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in.

Slides:



Advertisements
Similar presentations
Monday, June 23, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Monday, June 23, 2014 Dr. Jaehoon Yu Newton’s Law.
Advertisements

Wednesday, Feb. 25, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #8 Wednesday, Feb. 25, 2009 Dr. Jaehoon Yu Newton’s.
Tuesday, Sept. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #11 Tuesday, Sept. 30, 2014 Dr. Jaehoon Yu Newton’s Law.
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Wednesday, Oct. 6, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Work done by a constant force 2.Scalar Product of Vectors 3.Work done by a varying force.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
Thursday, June 19, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Thursday, June 19, 2014 Dr. Jaehoon Yu Uniform Circular.
PHYS 1443 – Section 001 Lecture #12 Monday, March 21, 2011 Dr. Jaehoon Yu Today’s homework is homework #7, due 10pm, Tuesday, Mar. 29!! Work and Energy.
Wednesday, Feb. 18, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #9 Wednesday, Feb. 18, 2004 Dr. Jaehoon Yu Chapter.
Wednesday, June 24, 2015 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 24, 2015 Dr. Jaehoon Yu Newton’s.
PHYS 1441 – Section 002 Lecture #15 Monday, March 18, 2013 Dr. Jaehoon Yu Work with friction Potential Energy Gravitational Potential Energy Elastic Potential.
Wednesday, July 1, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Wednesday, July 1, 2015 Dr. Jaehoon Yu Work-Kinetic.
Tuesday, Sept. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #10 Tuesday, Sept. 23, 2014 Dr. Jaehoon Yu Newton’s Laws.
PHYS 1441 – Section 002 Lecture #21 Monday, April 15, 2013 Dr. Jaehoon Yu Moment of Inertia Torque and Angular Acceleration Rotational Kinetic Energy Today’s.
Wednesday, June 18, 2014 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 18, 2014 Dr. Jaehoon Yu Newton’s.
Monday, Oct. 6, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #11 Newton’s Law of Gravitation Kepler’s Laws Work Done by.
Monday, June 29, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Monday, June 29, 2015 Dr. Jaehoon Yu Centripetal Acceleration.
Tuesday, June 14, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Tuesday, June 14, 2011 Dr. Jaehoon Yu Newton’s Laws.
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
PHYS 1441 – Section 002 Lecture #8 Monday, Feb. 11, 2013 Dr. Jaehoon Yu Maximum Range and Height What is the Force? Newton’s Second Law Free Body Diagram.
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Monday, Oct. 25, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Oct. 25, 2010 Dr. Jaehoon Yu Work – Kinetic.
Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #10 Monday, Oct. 11, 2010 Dr. Jaehoon Yu Force of Friction.
Wednesday, June 7, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 7, 2006 Dr. Jaehoon Yu Application.
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
Tuesday June 14, PHYS , Summer I 2005 Dr. Andrew Brandt PHYS 1443 – Section 001 Lecture #8 Tuesday June 14, 2005 Dr. Andrew Brandt Accelerated.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Monday, June 20, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #9 Monday, June 20, 2011 Dr. Jaehoon Yu Work Done By A.
Monday, Oct. 8, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #10 Monday, Oct. 8, 2007 Dr. Jaehoon Yu Uniform and Non-uniform.
Wednesday, Mar. 12, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #15 Wednesday, Mar. 12, 2008 Dr. Jaehoon Yu Work done.
Wednesday, Mar. 3, PHYS , Spring 2004 Dr. Andrew Brandt PHYS 1443 – Section 501 Lecture #12 Newton’s Law of Gravitation and Kepler’s Laws.
Thursday, June 7, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Thursday, June 7, 2007 Dr. Jaehoon Yu Application.
PHYS 1441 – Section 002 Lecture #13 Monday, March 4, 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation Motion in Resistive Force Work done by a.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Monday, Mar. 3, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Mar. 3, 2008 Dr. Jaehoon Yu Types of Forces.
Monday, Mar. 10, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Mar. 10, 2008 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Sept. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Forces of Friction 2.Uniform and Non-uniform Circular Motions 3.Resistive Forces and.
Wednesday, Oct. 2, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #6 Wednesday, Oct. 2, 2002 Dr. Jaehoon Yu 1.Newton’s laws.
Thursday, Oct. 2, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #12 Thursday, Oct. 2, 2014 Dr. Jaehoon Yu Work-Kinetic.
Wednesday, Oct. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #11 Wednesday, Oct. 10, 2007 Dr. Jaehoon Yu Free Fall.
PHYS 1443 – Section 001 Lecture #8 Wednesday, February 23, 2011 Dr. Jaehoon Yu Application of Newton’s Laws –Motion with friction Uniform Circular Motion.
Monday, June 13, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #5 Monday, June 13, 2011 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Oct. 13, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #11 Wednesday, Oct. 13, 2010 Dr. Jaehoon Yu Force of.
Tuesday, June 10, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Tuesday, June 10, 2008 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Sept. 24, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #9 Forces of Friction Uniform and Non-uniform Circular.
Monday, Sept. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Laws of Motion Gravitational Force and Weight Newton’s third law of motion 2.Application.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
Monday, Oct. 1, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Monday, Oct. 1, 2007 Dr. Jaehoon Yu Free Body Diagram.
PHYS 1441 – Section 002 Lecture #11 Monday, Feb. 25, 2013 Dr. Jaehoon Yu Application of Newton’s Laws Motion without friction Force of Friction Motion.
Monday, Mar. 30, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #14 Monay, Mar. 30, 2009 Dr. Jaehoon Yu Work-Kinetic Energy.
Wednesday, Oct. 1, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Wednesday, Oct. 1, 2008 Dr. Jaehoon Yu Free Body.
Tuesday, June 12, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #9 Tuesday, June 12, 2007 Dr. Jaehoon Yu Motion in Accelerated.
PHYS 1441 – Section 002 Lecture #14 Wednesday, March 6, 2013 Dr. Jaehoon Yu Work done by a constant force Scalar Product of the Vector Work with friction.
PHYS 1441 – Section 002 Lecture #11
PHYS 1443 – Section 002 Lecture #12
PHYS 1441 – Section 002 Lecture #13
PHYS 1441 – Section 002 Lecture #11
PHYS 1443 – Section 002 Lecture #12
PHYS 1441 – Section 002 Lecture #12
PHYS 1443 – Section 003 Lecture #12
PHYS 1443 – Section 003 Lecture #9
PHYS 1443 – Section 001 Lecture #9
PHYS 1441 – Section 001 Lecture # 9
PHYS 1443 – Section 001 Lecture #11
PHYS 1443 – Section 003 Lecture #11
PHYS 1443 – Section 002 Lecture #10
PHYS 1441 – Section 002 Lecture #13
Presentation transcript:

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in Resistive Force Work done by a constant force Scalar Product of the Vector Work with friction Work-Kinetic Energy Theorem Potential Energy

Announcements 2 nd non-comprehensive term exam –Date: Wednesday, Nov. 3 –Time: 1 – 2:20pm in class –Covers: CH3.5 – what we finish Monday, Nov. 1 Physics faculty research expo today Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 2

Wednesday, Oct. 20, PHYS , Fall 2010 Dr. Jaehoon Yu

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu Reminder: Special Project Using the fact that g=9.80m/s 2 on the Earth’s surface, find the average density of the Earth. –Use the following information only The gravitational constant The radius of the Earth 20 point extra credit Due: Wednesday, Oct. 27 You must show your OWN, detailed work to obtain any credit!! 4

Wednesday, Oct. 20, 2010 Motion in Resistive Forces Medium can exert resistive forces on an object moving through it due to viscosity or other types frictional properties of the medium. These forces are exerted on moving objects in opposite direction of the movement. Some examples? These forces are proportional to such factors as speed. They almost always increase with increasing speed. Two different cases of proportionality: 1.Forces linearly proportional to speed: Slowly moving or very small objects 2.Forces proportional to square of speed: Large objects w/ reasonable speed Air resistance, viscous force of liquid, etc PHYS , Fall 2010 Dr. Jaehoon Yu 5

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 6 x y Work Done by a Constant Force A meaningful work in physics is done only when the net forces exerted on an object changes the energy of the object. M F  Free Body Diagram M d  Which force did the work?Force How much work did it do? What does this mean? Physically meaningful work is done only by the component of the force along the movement of the object. Unit? Work is an energy transfer!! Why? What kind?Scalar

Let’s think about the meaning of work! A person is holding a grocery bag and walking at a constant velocity. Is he doing any work ON the bag? –No –Why not? –Because the force he exerts on the bag, F p, is perpendicular to the displacement!! –This means that he is not adding any energy to the bag. So what does this mean? –In order for a force to perform any meaningful work, the energy of the object the force exerts on must change!! What happened to the person? –He spends his energy just to keep the bag up but did not perform any work on the bag. Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 7

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 8 Work done by a constant force s

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 9 Scalar Product of Two Vectors Product of magnitude of the two vectors and the cosine of the angle between them Operation is commutative Operation follows the distribution law of multiplication How does scalar product look in terms of components? Scalar products of Unit Vectors =0

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 10 Example of Work by Scalar Product A particle moving on the xy plane undergoes a displacement d =(2.0 i +3.0 j )m as a constant force F =(5.0 i +2.0 j ) N acts on the particle. a) Calculate the magnitude of the displacement and that of the force. b) Calculate the work done by the force F. Y X d F Can you do this using the magnitudes and the angle between d and F?F?

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 11 Ex. Pulling A Suitcase-on-Wheel Find the work done by a 45.0N force in pulling the suitcase in the figure at an angle 50.0 o for a distance s=75.0m. Does work depend on mass of the object being worked on?Yes Why don’t I see the mass term in the work at all then? It is reflected in the force. If an object has smaller mass, it would take less force to move it at the same acceleration than a heavier object. So it would take less work. Which makes perfect sense, doesn’t it?

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 12 Ex. 6.1 Work done on a crate A person pulls a 50kg crate 40m along a horizontal floor by a constant force F p =100N, which acts at a 37 o angle as shown in the figure. The floor is rough and exerts a friction force F fr =50N. Determine (a) the work done by each force and (b) the net work done on the crate. What are the forces exerting on the crate? F G =-mg So the net work on the crate Work done on the crate by FGFG FpFp F fr Which force performs the work on the crate? FpFp F fr Work done on the crate by Fp:Fp: Work done on the crate by F fr : This is the same as F N =+mg Work done on the crate byF N

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 13 Ex. Bench Pressing and The Concept of Negative Work A weight lifter is bench-pressing a barbell whose weight is 710N a distance of 0.65m above his chest. Then he lowers it the same distance. The weight is raised and lowered at a constant velocity. Determine the work in the two cases. What is the angle between the force and the displacement? What does the negative work mean? The gravitational force does the work on the weight lifter!

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 14 The truck is accelerating at a rate of m/s 2. The mass of the crate is 120-kg and it does not slip. The magnitude of the displacement is 65 m. What is the total work done on the crate by all of the forces acting on it? Ex. Accelerating a Crate What are the forces acting in this motion? Gravitational force on the crate, weight, W or F g Normal force force on the crate, F N Static frictional force on the crate, f s

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 15 Ex. Continued… Let’s figure what the work done by each force in this motion is. Work done by the gravitational force on the crate, W or F g Work done by Normal force force on the crate, F N Work done by the static frictional force on the crate, f s Which force did the work? Static frictional force on the crate, f s How? By holding on to the crate so that it moves with the truck!

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 16 Kinetic Energy and Work-Kinetic Energy Theorem Some problems are hard to solve using Newton’s second law –If forces exerting on an object during the motion are complicated –Relate the work done on the object by the net force to the change of the speed of the object M ΣF M s vivi vfvf Suppose net force ΣF ΣF was exerted on an object for displacement d to increase its speed from vi vi to vf.vf. The work on the object by the net force ΣF ΣF is Using the kinematic equation of motion Work Kinetic Energy Work done by the net force causes change in the object’s kinetic energy. Work-Kinetic Energy Theorem