College Physics (II) Qingxu Li Tel: 62471347, Room 306, College of Mathematics and Physics.

Slides:



Advertisements
Similar presentations
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Advertisements

第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
Energy and Energy Transfer
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
实验:验证牛顿第二定律. 1 、实验目的:探究 a 与 F 、 m 的定量关系 2 、实验原理:控制变量法 A 、 m 一定时,探究 a 随 F 的变化关系 B 、 F 一定时, 探究 a 随 m 的变化关系.
平衡态电化学 化学电池 浓差电池 电极过程动力学.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
1 当恒温恒压时:  T,p G m =  B  B 将相应反应物质的化学位表达式代入上式,即可 求出该反应的摩尔反应的吉氏函数变  T,p G m 。 各类反应的标准平衡常数 由第六章 热力学第二定律中我们知道,包括化学 变化在内的任何过程的吉氏函数变为  G=-Sdt+Vdp+
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
分析化学与无机化学中溶液 pH 值计算的异同比较 谢永生  分析化学是大学化学系的一门基础课,课 时较少,其内容主要是无机物的化学分析。 分析化学是以无机化学作为基础的,我们 都是在已掌握一定的无机化学知识后才学 习分析化学 。所以在分析 化学的学习中会 重复许多无机化学内容,造成学习没有兴.
2.1 结构上的作用 作用及作用效应 作用的分类 荷载分类及荷载代表值.
1 为了更好的揭示随机现象的规律性并 利用数学工具描述其规律, 有必要引入随 机变量来描述随机试验的不同结果 例 电话总机某段时间内接到的电话次数, 可用一个变量 X 来描述 例 检测一件产品可能出现的两个结果, 也可以用一个变量来描述 第五章 随机变量及其分布函数.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
论匀强磁场条件下磁通回 路的取法 物理四班 物理四班 林佳宁 (PB ) 林佳宁 (PB ) 指导老师 : 秦敢 指导老师 : 秦敢.
主讲教师:陈殿友 总课时: 124 第八讲 函数的极限. 第一章 机动 目录 上页 下页 返回 结束 § 3 函数的极限 在上一节我们学习数列的极限,数列 {x n } 可看作自变量 为 n 的函数: x n =f(n),n ∈ N +, 所以,数列 {x n } 的极限为 a, 就是 当自变量 n.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十八讲 ) 离散数学. 第八章 格与布尔代数 §8.1 引 言 在第一章中我们介绍了关于集 合的理论。如果将 ρ ( S )看做 是集合 S 的所有子集组成的集合, 于是, ρ ( S )中两个集合的并 集 A ∪ B ,两个集合的交集.
1 第七章 灼热桥丝式电雷管. 1. 热平衡方程 C ℃ 冷却时间 2. 桥丝加热过程 ⑴忽略化学反应惰性方程 ; (2) 为简化集总参数 C, (3) 热损失有两部分 : 轴向与径向 ; 第一种情况 在大功率下忽略热损失, 第二种情况 在输入低功率下 输入 = 散失热量 I I = 3 电容放电时的桥丝温度和发火能量(电容放电下,
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第三十九讲 ) 离散数学. 例 设 S 是一个集合, ρ ( S )是 S 的幂集合,集合 的交( ∩ ),并(∪)是 ρ ( S )上的两个代数运算, 于是,( ρ ( S ), ∩ ,∪) 是一个格。而由例 知.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 5 章 解线性方程组的直接法 实际中,存在大量的解线性方程组的问题。很多数值方 法到最后也会涉及到线性方程组的求解问题:如样条插值的 M 和.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
量子力学教程 ( 第二版 ) 3.4 连 续 谱 本 征 函 数 的 归 一 化 连续谱本征函数是不能归一化的 一维粒子的动量本征值为的本征函数 ( 平面波 ) 为 可以取 中连续变化的一切实数值. 不难看出,只要则 在量子力学中, 坐标和动量的取值是连续变化 的 ; 角动量的取值是离散的.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
周期信号的傅里叶变换. 典型非周期信号 ( 如指数信号, 矩形信号等 ) 都是满足绝对可 积(或绝对可和)条件的能量信号,其傅里叶变换都存在, 但绝对可积(或绝对可和)条件仅是充分条件, 而不是必 要条件。引入了广义函数的概念,在允许傅里叶变换采用 冲激函数的前提下, 使许多并不满足绝对可积条件的功率.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
Department of Mathematics 第二章 解析函数 第一节 解析函数的概念 与 C-R 条件 第二节 初等解析函数 第三节 初等多值函数.
PHY131H1S - Class 17 Today: Review for Test 2!.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical.
10 Interference of Waves, Standing Waves
Chapter 11 Angular Momentum.
Chapter 6 Energy and Energy Transfer. Introduction to Energy The concept of energy is one of the most important topics in science Every physical process.
Internal Energy The energy associated with an object’s temperature is called its internal energy, Eint In this example, the surface is the system The friction.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Part One Mechanics 力学 Part One Mechanics 力学. Chapter 1 Kinematics ( 质点 ) 运动学.
图书馆 第四章 刚体的转动 rotation of a rigid body rotation of a rigid body.
Chapter 4 The Laws of Motion. Classes of Forces Contact forces involve physical contact between two objects Field forces act through empty space No physical.
Kinematics 一、运动学的研究对象及任务 1 .研究对象 Point(particle), Rigid body and System of Rigid Bodies. Point: 不计大小的几何点. 2 .研究任务 (1) 研究物体的机械运动及运动 的几何性质。 (2) 研究机构传动规律。
Force and Motion This week – This week – Force and Motion – Chapter 4 Force and Motion – Chapter 4.
1 物体转动惯量的测量 南昌大学理学院
请同学们仔细观察下列两幅图有什么共同特点? 如果两个图形不仅形状相同,而且每组对应点所在的直线 都经过同一点, 那么这样的两个图形叫做位似图形, 这个点叫做位 似中心.
Chapter 7 Energy of a System.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Chapter 11 Angular Momentum. Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum.  In.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
天文物理學會講座 牛頓力學與天體運動.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
Chapter 5 The Laws of Motion.
2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation1 Chapter 3. Theorem of momentum and the law of momentum conservation.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
第 11 章 旋转电机交流绕组的电势和磁势 内 容 提 要内 容 提 要  旋转磁场是交流电机工作的基础。  在交流电机理论中有两种旋转磁场: (1) 机械旋转磁场(二极机械旋转磁场,四极机械旋转磁场) (2) 电气旋转磁场(二极电气旋转磁场,四极电气旋转磁场)二极机械旋转磁场四极机械旋转磁场二极电气旋转磁场四极电气旋转磁场.
3D 仿真机房建模 哈尔滨工业大学 指导教师:吴勃英、张达治 蒋灿、杜科材、魏世银 机房尺寸介绍.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
第二节. 广告牌为什么会被风吹倒? 结构的稳定性: 指结构在负载的作用下 维持其原有平衡状态的能力。 它是结构的重要性质之一。
Chapter 4 The Laws of Motion.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
本章讨论有限自由度结构系统,在给定载荷和初始条件激励下的系统动力响应计算方法。 第 六 章
1 Chapter 5 The Laws of Motion. 2 Force Forces are what cause any change in the velocity of an object A force is that which causes an acceleration The.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
The Laws of Motion (not including Atwood)
Presentation transcript:

College Physics (II) Qingxu Li Tel: , Room 306, College of Mathematics and Physics

“The most incomprehensible thing about the universe is that it is comprehensible.” —-Albert Einstein

About the Course College Physics (II) Textbook: General Physics, Bin Liang, et al. Contents: Mechanics, Oscillation and Wave, Optics; Electromagnetism, Relativity, Quantum Physics, etc. Course grade: Final Exam (70%) + Performance (30%) Exercises and Exam are to be finished in English (Chapter 2-7, 10)

a. Principle of Physics, 3rd edition, Serway and Jewett b. Feynman’ Lectures on Physics (Volume I), by R. P. Feynman c. 物理学,马文蔚,高等教育出版社,第五版 …… Reference books

A Brief Summary of Chapter 1

Units, Dimension, Significant Figures, Order of Magnitude, Vector a. Units are indispensable for physical quantities. b. Vectors are to be distinguished from scalars. c. Properties of Vectors: magnitude, direction, components, equality, addition, dot product, cross product, etc. (单位,量纲,有效数字,数量级,矢量)

Position and Displacement Vectors (位置矢量和位移矢量) path 路程, 路线 locus 轨迹 distance 距离

Average Velocity and Instantaneous Velocity (平均速度和瞬时速度)

Fig 1.1 A particle moving in the xy plane

Alternative Expressions (其他形式)

Acceleration The average acceleration of a particle over a time interval is defined as: And the instantaneous acceleration is defined as: (加速度)

Alternative Expressions

Fig 1.2 The Velocity-Time diagram. The magnitude of acceleration vector is the slope of the curve v—t.

Problems Related to Kinematics

Mechanics  Kinematics  Dynamics

The Laws of Motion (运动定律) Part II Dynamics

Nature and nature’s laws lay hid in night. God said: Let Newton be! and all was light. --Alexander Pope

The Concept of Force ( 力 的概念) The force is a vector quantity. The unit of force is newton, which is defined as the force that, when acting on a 1-kg mass, produces an acceleration of 1m/s 2. The dimension of force is:

Newton’s First Law (牛顿第一定律) Newton’s first law of motion: In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line) In simpler terms, when no force acts on a body, its acceleration is zero. (在没有外力的情况下,静止的物体会保持静止,而运动的物体则保 持运动速度不变,也就是说运动物体做匀速直线运动。) (简单地讲,如果没有外力作用,物体的加速度为零)

Comments on the First Law 1.The first law tell us that an object has a tendency to maintain its original state of motion in the absence of the force. This tendency is called inertia, and the first law sometimes called the law of inertia. 2. Newton’s first law defines a special set of reference frames called inertial frames. An inertial frame of reference is one in which the first law is valid. 3. Inertial mass is the measure of an objects resistance to change in motion in response to an external force. Inertial mass is different in definition from gravitational mass, but they have the same value, so we call them both simply mass. (牛顿第一定律告诉我们物体在不受外力的情况下有一个保持原来的运动状态的 趋势) - 称为惯性,因而第一定律有时又被称为惯性定律) (利用牛顿第一定律可以定义一类特殊的参照系 - 惯性系:在惯性系中,第一定律 成立) (惯性质量是物体阻止运动状态发生改变能力即惯性大小的量度。惯性质量和引 力质量在定义上不同,但它们具有相同的数值,统称为质量)

Mass and Weight (质量和重量) Mass and weight are two different quantities, and should not be confused with each other. The magnitude of an object is equal to the magnitude of the gravitational force exerted by the planet on which the objects resides. While the mass of an object is the same everywhere. A given object exhibits a fixed amount of resistance to changes in motion regardless of its location. E.g. A person of mass 60 kg on Earth also has a mass of 60 kg on the moon. The same person weighs 588 Newton on Earth, but weighs 98 Newton on the moon.

Newton’s Second Law (牛顿第二定律) Newton’s second law of motion: The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. (物体的加速度和它受到的合外力成正比和它的质量成反比) net force (合力)

Net Force ① the resultant force ② the sum of the force ③ the total force ④ the unbalanced force The net force is also known as:

The Mathematical Form of the Second Law (第二定律的数学形式)

Comments on the Second Law 1.The Newton’s second law is the central rule of classical mechanics, which bridges dynamics and kinematics and tells that force is the cause of the change of motion (not motion!). 2. The second law has an alternative expressions: In special relativity, the mass of an object will vary with its velocity and thus vary with time. The previous form is invalidated in this case but the new form still holds. Of course, both form are equivalent for non-relativistic cases. 3. The second law can also be expressed as:

Newton’s Third Law (牛顿第三定律) Newton’s third law of motion: If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude but opposite in direction to the force exerted by object 2 on object 1. (如果两个物体之间(存在)相互作用),则物体 1 作用到物 体 2 上的力和物体 2 作用到物体 1 上的力大小相等,方向相反) Forces always occurs in pairs, i.e., that a single isolated force cannot exist. (力总是成对出现,也就是说,单个孤立的力是不能存在的)

Comments on the Third Law The force that object 1 exerts on object 2 may be called action force and the force of object 2 on object 1 the reaction force. The action force is equal in magnitude to the reaction force and opposite in direction. In all cases, the action and the reaction forces act on different objects and must be of the same type. (物体 1 作用在物体 2 上的力可以称作作用力,相应地我们称物体 2 作用在物体 1 上的力为反作用力。作用力和反作用力大小相等方向相反。 作用力和反作用力类型相同,并且作用在不同的物体上)

Applications of Newton’s Law (牛顿定律的应用)

The Particle in Equilibrium Objects that are either at rest or moving with constant velocity are said to be in equilibrium. From Newton’s second law, this condition of equilibrium can be expressed as: or: (处于平衡状态的质点) (我们称静止或作匀速直线运动的物体处于平衡状态。根据牛顿第二定律,物体 处于平衡状态的条件可以表达为:)

The Accelerating Particle (加速质点) When a nonzero net force is acting on a particle, the particle is accelerating, and the second law tell us: In practice, the above equation is broken into components, so that two or three equations can be handled independently. (如果质点受到一个非零的合外力,则质点加速运动,由第二定律可知) (上述方程在应用的时候通常分解为分量形式,这样就可以单独处理两个或 三个方程)

E.g. 1.1 When two objects with unequal masses are hung vertically over a light, frictionless pulley as in the figure, the arrangement is called an Atwood machine. The device is sometimes used in the lab to measure the free-fall acceleration. Calculate the magnitude of the acceleration of the two objects and the tension in the string. The Atwood Machine (阿特伍德机) Fig 1.10 The Atwood machine.

Forces of Friction When an object moves either on a surface or through a viscous medium such as air or water, there is resistance to the motion. We call such resistance a force of friction. (摩擦力) Force of friction force of static friction force of kinetic friction (静摩擦力) (动摩擦力)

Simplified model for force of friction 1.The magnitude of the force of static friction between any two surfaces in contact can have the values 2. The magnitude of the force of kinetic friction acting between two surfaces is 3. The values ofμ k andμ s depend on the nature of the surfaces, but the former is generally less than the latter. 4. The direction of the friction force on an object is opposite to the actual motion or the impending motion of the object relative to the surface with which it is in contact. μ s : the coefficient of static friction n : the magnitude of normal force μ k : the coefficient of kinetic friction

Fig 1.5 A graph of the magnitude of the friction force versus that of the applied force.

The Gravitational Force: Newton’s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them. 引力:牛顿万有引力定律

The electrostatic force Coulomb’s Law The magnitude of the electrostatic force between two charged particle separated by a distance r is: The Coulomb constant

The Fundamental Forces of Nature ① The Gravitational Force ② The Electromagnetic Force ③ The Strong Force (The Nuclear force) ④ The Weak Force (自然界中的力) (引力) (电磁力 ) (强力) (弱力)

Newton’s Second Law Applied to a Particle in Uniform Circular Motion A particle moving in a circular path with uniform speed experiences a centripetal acceleration of magnitude: The acceleration vector is directed toward the centre of the circle and is always perpendicular to its velocity. Apply Newton’s second law to the particle along the radial direction: centripetal force (向心力)

Non-uniform Circular Motion For non-uniform circular motion, there is, in addition to the radial component of acceleration, a tangential component, that is: The total force exerted on the particle is The first term in the RHS is directed toward the center of the circle and is responsible for the centripetal acceleration; and the second term is tangent to the circle and responsible for the tangential acceleration, which causes the speed of the particle to change with time.

Energy of a System (物理体系的能量 ) Energy kinetic energy potential energy (动能) (势能)

Work (功) The work done by a force on a system is defined as: For a finite displacement, (作用在一个体系上的力对体系作功定义为) (对于一个有限位移)

Work Done by a Constant Force (恒力作功) For a constant force, the work reads: If the applied force is parallel to the direction of the displacement, And if the force is perpendicular to the displacement, then

From the definition of dot product, we get:

Work done by a Spring Hooke’s Law

The work done by the restoring force on a block connected with a spring reads: restoring force 回复力

Kinetic Energy (动能) The work done on a system in motion:

Define the kinetic energy of a particle is: From the above definition, we get: Work-kinetic energy theorem (功能定理)

When work is done on a system and the only change in the system is in its speed, the work done by the net force equals the change in kinetic energy of the system. Work-kinetic energy theorem: (当外界对体系作的功给体系带来的只是体系运动速率的变化时,合 外力所做的功等于体系动能的增量)

E.g. 1.8 A 6.00 kg block initially at rest is pulled to the right along a horizontal friction less surface by a constant, horizontal force of 12.0 N, as shown in the figure. Find the speed of the block after it has moved 3.00m.

Potential Energy Kinetic Energy: related to the motion of an object Internal Energy: related to the temperature of a system Potential Energy: related to the configuration of a system configuration: 构型,结构 Example: gravitational potential energy, (势能)

Conservative Forces The work done by a conservative force does not depend on the path followed by the members of the system, and depends on the initial and final configurations of the system. In other words, the work done by a conservative on an object does not depend on the path of the object, but depends on its initial and final position. From above definition, it immediately follows that the work done by a conservative force when an object is moved through a closed path is equal to zero. (保守力)

Conservative Forces and Potential Energy Conservative force :

Define potential energy function as: From above definition, we can get: and:

Gravitational Force Consider a particle of mass m above the Earth’s surface: The gravitational force on the particle due to the Earth reads: The work done by the gravitational force

Assuming: And we get: In summary, the gravitational potential energy for any pair of particles varies as 1/r. Furthermore, the potential energy is negative because the force is attractive and we have chosen the potential energy to be zero when the particle separation is infinity.

E.g. A particle of mass m is displaced through a small vertical distance Δy near the Earth’s surface. Show that expression for the change in gravitational potential energy reduces to the familiar relationship: ΔU g =mg Δy.

Electrostatic Force (静电力) The electrostatic force between two charged particles reads: In a way similar to gravitational force case, we can get electric potential energy function ( 电势能) :

The Force of a Spring According to Hook’s law, a block connected to a spring experiences a force: Therefore, the potential energy stored in a block-spring system is: If the initial position of the block is x i =0, U i is always chosen as zero, Then, elastic potential energy (弹性势能)

势能函数 保守力

Mechanical Energy (机械能) The sum of kinetic and potential energy is defined as mechanical energy: If in an isolated system there are only conservative forces which do work, the mechanical energy will keep unchanged, as is called conservation of mechanical energy. (体系的动能和势能之和定义为体系的机械能) (如果孤立体系中只有保守力做功,则系统的机械能保持不变,称体系 的机械能守恒)

The conservation of mechanical energy in a system can be expressed as: The conservation of energy in an isolated system can be expressed as:

Stability of Equilibrium (平衡的稳定性) Energy diagram: An energy diagram shows the potential energy of the system as a function of the position of one of members of the system. Stable equilibrium: When the system locates such a position that any movement away from this position results in a force directed back toward the position. (this type of force is called restoring force.) In general, positions of stable equilibrium correspond to those positions for which the potential energy function has a relative minimum value on an energy diagram. And positions of unstable equilibrium correspond to those positions for which the potential energy has a relative maximum value.

Energy Transfer isolated systems Vs non-isolated systems system and its environment Work is one means of energy transfer between the system and its environment. If positive work is done on the system, energy is transferred from the system to the environment, whereas negative work indicates that energy is transferred from the system to the environment. (孤立系统 Vs 非孤立系统) (系统和环境) (能量转移)

Heat and Thermal Conduction (热和热传递) Except for work, energy can also be transferred through thermal conduction. The work done on a system may also increase its internal energy, in addition to change its kinetic energy. The internal energy of an object is associated with its temperature. And it’s well known that heat can be transferred from a warmer object to another object. The energy transfer caused by a temperature difference between two regions in space is called thermal conduction. internal energy 内能 heat 热,热量 thermal conduction 热传递

Mechanical Wave Mechanical wave are a means of transferring energy by allowing a disturbance to propagate through into air or another medium. This is the method by which energy leaves a radio through the loudspeaker-sound-and by which energy enters your ears to stimulate the hearing process. (机械波) disturbance 扰动 propagate 传播 medium 介质,媒介

Principle of Conservation of Energy We can neither create nor destroy energy – energy is conserved. If the amount of energy in a system changes, it can only be due to the fact that energy has crossed the boundary by a transfer mechanism. (能量既不能创生,也不能消灭 —— 能量是守恒的) (如果体系的能量发生了变化,只可能是体系的一部分能量通过一种能量 转移机制穿出了体系的边界) (能量守恒定律)

isolated and non-isolated systems For isolated systems, energy is always conserved, so: While for non-isolated systems, we have: Work Heat matter transfer

Power (功率) Power: the time rate of energy transfer. Average power: If the work done by a force is W in the time interval Δt, then the average power during this time interval is defined as: The instantaneous power: (功率:能量转化的快慢)

For work done by a varying force: In general, power is defined for any type of energy transfer and the most general expression for power is, therefore

Unit of Power (功率的单位) Unit of Power: Watt Other mostly used units of power:

Momentum and Impulse (动量和冲量)

motion kinematics mechanics (force) energy momentum

Momentum (动量) The (linear) momentum of an object of mass m moving with a velocity v is defined to be the product of the mass and velocity: Momentum is a vector quantity and its direction is the same as that for velocity; And it has dimension ML/T. In SI system, the momentum has the units kg·m/s.

Momentum and Force As pointed out before, the Newton’s second law can be rewritten as: From above equation, we see that if the net force on an object is zero, the time derivative of the momentum is zero, and therefore the momentum of the object must be constant. Of course, if the particle is isolated, then no forces act on it and the momentum remains unchanged——this is Newton’s first law.

Momentum and Isolated Systems The total momentum of an isolated system remains constant. The total momentum for an isolated system Thus, we have The law of conservation of linear momentum! (孤立体系的动量是一个常数) (动量守恒定律)

Impulse and Momentum (冲量和动量) Assuming a net varying force acts on a particle, then we get: thus the change in the momentum of the particle during the time interval Δt = t f − t i reads: The Impulse of a force is defined as: impulse-momentum theorem (冲量 - 动量定理) Also valid for a system of particles (对于质点系也成立)

Impulse is an interaction between the system and its environment. As a result of this interaction, the momentum of the system changes. (冲量是体系和环境之间的一种相互作用,它带来体系动量的变化) The impulse approximation: We assume that one of the forces exerted on a particle acts for a short time but is much greater than other force present. this simplification model allows us to ignore the effects of other forces, because these effects are be small during the short time during which the large force acts. (冲量近似:如果有一个力短时间作用于一个质点,并且作用 过程中这个力比该质点所受到的其它力要大很多,这时可以忽 略其它力带来的效应。)

Collisions When two objects collide, it is a good approximate in many cases to assume that the forces due to the collision are much larger than any external forces present, so we can use the simplification model: the impulse approximation. Collisions (碰撞) Elastic collision (弹性碰撞) Inelastic collision (非弹性碰撞) Perfectly inelastic collision Momentum is conserved in all cases, but kinetic energy is conserved only in elastic collisions. (动量在所有的碰撞过程中守恒,而动能仅在弹性碰撞中守恒)

For the collision is elastic, we get the third equation for conservation of kinetic energy: Solve the set of equations composed of above three equations, we obtain:

The Centre of Mass (质心) The center of mass of a system of particles is defined as: For an extended object reads:

The centre of mass of a homogeneous, symmetric body must lie on an axis of symmetry. The centre of mass of a system is different from its centre of gravity. Each portion of a system is acted on by the gravitational force. The net effect of all of these forces is equivalent to the effect of a single force Mg acting at a special point called the center of gravity. The centre of gravity is the average position of the gravitational force on all parts of the object. If g is uniform over the system, the centre of gravity coincides with the centre of mass. In most cases, for objects or systems of reasonable size, the two points can be considered to be coincident.

E.g. 0.1 A system consists of three particles located at the corners of a right triangle as in the figure. Find the centre of mass of the system.

E.g. 0.2 A rod of length 30.0 cm has a linear density: where x is the distance from one end, measured in meters. (a)What is the mass of the rod? (b)How far from the x = 0 end is its center of mass?

Motion of a System of Particles 质心运动定律

E.g. 0.2 A rod of length 30.0 cm has a linear density: where x is the distance from one end, measured in meters. (a)What is the mass of the rod? (b)How far from the x = 0 end is its center of mass?

Motion of a System of Particles 质心运动定律

Outline of Rotational Motion

Rigid body model: A rigid body is any system of particles in which the particles remain fixed in position with respect to one another. Rotation about a fixed axis : Every particles on a rigid body has the same angular speed and the same angular acceleration. rigid body 刚体 rotation about a fixed axis 定轴转动

Rotational kinematics The rigid body under constant angular acceleration (常角加速度转动的刚体) (转动学)

Relations Between Rotational and Translational Quantities (转动量和平移量之间的关系) translational motion 平动

Rotational Kinetic Energy the moment of inertial rotational kinetic energy: For an extended system: (转动动能)

The Rigid Body under a Net Torque (力矩作用下的刚体) The net torque acting on the rigid body is proportional to its angular acceleration. ( 转动定律 )

The torque vector The Rigid Body in Equilibrium (处于平衡状态的刚体) Two conditions for complete equilibrium of an object: translational equilibriumrotational equilibrium (力矩)

Work and Energy in Rotational Motion (转动中的作功与能量) Work done by a torque The power of a torque

Angular Momentum The angular momentum of the particle relative to the origin is defined as: (角动量)

Conservation of Angular Momentum (角动量守恒) The total angular momentum of a system remains constant if the net external torque acting on the system is zero.

一个刚体的运动,可以视为二种运动所组成,即质量 中心,受到所有外力作用所引起的运动,加上物体在外力作用 下,绕质心的转动。一个刚体的动能,系质心的平移运动的动 能,加上绕质心运动的转动动能。 引自《古典动力学》,吴大猷 刚体的运动总可以分解为质心的平动刚体的转动的合成。

A Brief Summary of Part I  Kinematics of a Particle  Newton’s Laws of Motion  Work and Energy  Momentum and Impulse  Motion of a System of Particles  Rotations of a Rigid Body about a Fixed Axis

The End of Part I