CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 1 Introduction to analog CMOS design.

Slides:



Advertisements
Similar presentations
Physical structure of a n-channel device:
Advertisements

Transistor Amplifiers
Bipolar Junction Transistor Circuit Analysis
Announcements Assignment 2 due now Assignment 3 posted, due Thursday Oct 6 th First mid-term Thursday October 27 th.
ECE340 ELECTRONICS I BIPOLAR JUNCTION TRANSISTOR.
Chapter 5 Bipolar Junction Transistors
SINGLE-STAGE AMPLIFIERS
Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model Virgínia Helena Varotto Baroncini Oscar da Costa Gouveia Filho.
Bipolar Junction Transistors EE314. Chapter 13: Bipolar Junction Transistors 1.History of BJT 2.First BJT 3.Basic symbols and features 4.A little bit.
Differential and Multistage Amplifiers
Slide 8-1 Chapter 8 Bipolar Junction Transistors Since 1970, the high density and low-power advantage of the MOS technology steadily eroded the BJT’s early.
Chapter 5 – Field-Effect Transistors (FETs)
Fig. 5.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500.
Digital Integrated Circuits A Design Perspective
Reading: Finish Chapter 6
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Fig. 6.2 Different modes of operation of the differential pair: (a) The differential pair with a common-mode input signal vCM. (b) The differential.
Chapter 5 Differential and Multistage Amplifier
Single-Stage Integrated- Circuit Amplifiers
Chapter #12: Operational-Amplifier Circuits
Principles & Applications
Power Electronic Devices
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
Chapter 17 Electronics Fundamentals Circuits, Devices and Applications - Floyd © Copyright 2007 Prentice-Hall Chapter 17.
Chapter 6: Bipolar Junction Transistors
NAME OF FACULTY : MR. Harekrishna Avaiya DEPARTMENT: E.C. (PPI-1ST)
EE130/230M Review Session 1.Small Signal Models for MOSFET/BJT 2.MOS Electrostatics.
Recap in Unit 2 EE2301: Block B Unit 2.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Principles & Applications
Principles & Applications
7-1 McGraw-Hill Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Chapter Seven Frequency Response.
Chapter Seven Frequency Response. Figure 7.1 Amplifier gain versus frequency.
D. De Venuto,Politecnico di Bari 0 The CMOS common-gate amplifier: (a) circuit; (b) small-signal equivalent circuit; and (c) simplified version of the.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
9-11 july 2003C. de La Taille Electronics CERN Summer School Course 2 : deciphering a schematic C. de LA TAILLE LAL Orsay CERN.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 5-1 Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS Analog Design Using All-region MOSFET Modeling Chapter 3 CMOS technology, components, and layout.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. C H A P T E R 9 Frequency Response.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
ECE 342 – Jose Schutt-Aine 1 ECE 242 Solid-State Devices & Circuits 15. Current Sources Jose E. Schutt-Aine Electrical & Computer Engineering University.
CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 2 Advanced MOS transistor modeling.
CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 11 MOSFET parameter extraction for design.
© The McGraw-Hill Companies, Inc McGraw-Hill 1 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I 10.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 9, slide 1 Introduction to Electronic Circuit Design.
1 Lecture 10 Frequency response. 2 topics Bode diagram BJT’s Frequency response MOSFET Frequency response.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
Introduction to BJT Amplifier BJT (Review). Still remember about BJT? The emitter current (i E ) is the sum of the collector current (i C ) and the base.
McGraw-Hill 5-1 © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
EE 330 Lecture 28 Small-Signal Model Extension Applications of the Small-signal Model.
Introduction to MOS Transistors Section Outline Similarity Between BJT & MOS Introductory Device Physics Small Signal Model.
Chapter 15 Differential Amplifiers and Operational Amplifier Design
TRANSISTOR - Introduction BIPOLAR JUNCTION TRANSISTOR (BJT)
1 Tai-Cheng Lee Spring 2006 MOS Field-Effect Transistors (MOS) Tai-Cheng Lee Electrical Engineering/GIEE, NTU.
Solid-State Devices & Circuits 17. Differential Amplifiers
Microelectronic Circuits SJTU Yang Hua Chapter 6 Differential and Multistage Amplifiers Introduction 6.1 The BJT differntial pair 6.2 Small-signal operation.
1 Small Signal Model MOS Field-Effect Transistors (MOSFETs)
Single-Stage Integrated- Circuit Amplifiers. IC Biasing The Basic MOSFET Current Source SATURATION.
SJTU Zhou Lingling1 Chapter 5 Differential and Multistage Amplifier.
CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 9 Fundamentals of integrated continuous-time filters.
NAME: NIDHI PARMAR ENR.NO.: GUIDED BY: RICHA TRIPATHI.
Submitted by- RAMSHANKAR KUMAR S7,ECE, DOE,CUSAT Division of Electronics Engineering, SOE,CUSAT1.
CHAPTER INTRODUCTION 6.2 QUASI-STATIC OPERATION.
ECE 333 Linear Electronics Chapter 7 Transistor Amplifiers How a MOSFET or BJT can be used to make an amplifier  linear amplification  model the linear.
BJT transistors Summary of DC problem 2 Bias transistors so that they operate in the linear region B-E junction forward biased, C-E junction reversed.
Solid-State Devices & Circuits
Introduction to BJT Amplifier Bipolar Junction Transistor (Review)
Presentation transcript:

CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 1 Introduction to analog CMOS design

CMOS Analog Design Using All-Region MOSFET Modeling 2 Important differences between BJTs and MOSFETs A)BJTs are three-terminal devices and MOSFETs are four-terminal devices B) Differences in the internal symmetries of the most commonly used BJTs and MOSFETs C) BJT exponential current law vs. MOS current law D) The geometric degrees of freedom for MOSFETs in analog design E) Quality of BJT and MOSFET models

CMOS Analog Design Using All-Region MOSFET Modeling 3 Ebers-Moll equivalent circuit of an npn transistor E B RIRRIR FIFFIF IFIF IRIR IEIE ICIC IBIB C DEDE DCDC Forward and reverse currents

CMOS Analog Design Using All-Region MOSFET Modeling 4 The capacitive model of the MOS structure ss V GB p- type neutral region depletion region ss V GB

CMOS Analog Design Using All-Region MOSFET Modeling 5 MOSFET: symmetric strong and weak inversion models strong inversion weak inversion V DB p-type substrate n+n+ n+n+ V SB V GB IDID

CMOS Analog Design Using All-Region MOSFET Modeling 6 Intrinsic gain stages: common-source and common-emitter amplifiers

CMOS Analog Design Using All-Region MOSFET Modeling 7 Small-signal circuit and frequency response of the CS and CE amplifiers

CMOS Analog Design Using All-Region MOSFET Modeling 8 Design of the CE and CS amplifiers BJT MOSFET

CMOS Analog Design Using All-Region MOSFET Modeling 9 Example: GB = 10 MHz, C L = 10 pF = 80·10 -6 A/V 2, n = Strong inversion model. 2 Accurate all- region MOSFET model W/L I Dsi (  A) 1 I D (  A) 2 

CMOS Analog Design Using All-Region MOSFET Modeling 10 All-region “empirical” model of the MOSFET

CMOS Analog Design Using All-Region MOSFET Modeling 11 Aspect ratio vs. current excess in a MOSFET design

CMOS Analog Design Using All-Region MOSFET Modeling 12 Consistent modeling of MOSFETs and the series association

CMOS Analog Design Using All-Region MOSFET Modeling 13 Series-parallel association of MOSFETs

CMOS Analog Design Using All-Region MOSFET Modeling 14 Series association of MOSFETs vs. long-channel MOSFETs Series association Long-channel Nominal V T L-dependent V T Characterize one transistor ( performance of the shortest transistor is “optimized”) L-dependent characterization (halo/pocket implants effects) “Accurate” for current mirrors L-dependent accuracy Gate current more predictable Extrinsic capacitors at intermediate nodes

CMOS Analog Design Using All-Region MOSFET Modeling 15 Application of series parallel associations of MOSFETs - M:1 current mirrors N M IOIO M : 1 N N I in IOIO M : 1 M I in IOIO  M : 1/  M MM MM

CMOS Analog Design Using All-Region MOSFET Modeling 16 Current mismatch of two M:1 current mirrors Arnaud, JSSC Sep. 06 I in IOIO 100 : N IOIO 100 : 1 10 I in 10

CMOS Analog Design Using All-Region MOSFET Modeling 17 M-2M Digital-to-Analog converter (1): A set of 4 transistors can be used as substitute for Mbb VGVG I D1 I D2 IDID I D2a I D2b I D1 MaMa M bb M ba M bd M bc MdMd McMc

CMOS Analog Design Using All-Region MOSFET Modeling 18 M-2M Digital-to-Analog converter (2): 8 bit DAC with M-2M ladder Q0Q0 Q6Q6 Do DQ ck Q1Q1 DQ Q7Q7 DQ Di Ck DQ ck

CMOS Analog Design Using All-Region MOSFET Modeling 19 M-2M Digital-to-Analog converter (3): Model of the normalized current mismatch for a 10 μm x 10 μm transistor

CMOS Analog Design Using All-Region MOSFET Modeling 20 M-2M Digital-to-Analog converter (4):

CMOS Analog Design Using All-Region MOSFET Modeling 21 Top area is the M-2M ladder and the bottom area is the serial register. Klimach, ISCAS 08 M-2M Digital-to-Analog converter (5):

CMOS Analog Design Using All-Region MOSFET Modeling 22 Similar approaches to CMOS design Paul G. A. Jespers; The gm/ID Design Methodology for CMOS Analog Low Power Integrated CircuitsThe gm/ID Design Methodology for CMOS Analog Low Power Integrated Circuits 2009, ISBN: D. M. Binkley; Tradeoffs and Optimization in Analog CMOS Design ISBN: , Wiley 2008.Tradeoffs and Optimization in Analog CMOS Design Danica Stefanovic and Maher Kayal; Structured Analog CMOS Design Series: Analog Circuits and Signal Processing 2009, ISBN: