1 Final Control Introduction Thermal Circuits –Thermal resistance –Heat Sinks –2N3904 example –OPA512 example JFET/MOSFET Review Summary.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
Field Effect Transistors
Introduction to Semiconductor Devices
ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
MOSFET SELECTION FOR A THREE PHASE INVERTER Team 9 JR Alvarez, Matt Myers Chris Sommer, Scott OConnor.
Field Effect Transistor characteristics
Component Symbols & Information Prof. Dr. Moustafa M. Mohamed Vice Dean, Faculty of Allied Medical Science, Pharos University in Alexandria.
Physical structure of a n-channel device:
Bridging Theory in Practice Transferring Technical Knowledge to Practical Applications.
Static charges will move if potential difference and conducting path exists between two points Electric field due to potential difference creates force.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 28 Field-Effect Transistors.
From analog to digital circuits A phenomenological overview Bogdan Roman.
Justin Chow Jacob Huang Daniel Soledad ME 4447/6405 Student Lecture.

Output Transistors Current gain / input impedance is a vital parameter of a power amplifier. In the class A analysis, the load impedance is scaled by a.
Thermal Equivalent Circuit for a Transistor. Junction Temperature Case TemperatureHeat Sink Temperature Ambient Temperature.
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Output Transistors Current gain / input impedance is a vital parameter of a power amplifier. In the class A analysis, the load impedance is scaled by a.
POWER TRANSISTOR – MOSFET Parameter 2N6757 2N6792 VDS(max) (V)
Power Electronic Devices Semester 1 Lecturer: Javier Sebastián Electrical Energy Conversion and Power Systems Universidad de Oviedo Power Supply Systems.
POWER AMPLIFIER CHAPTER 4.
Principles & Applications
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 20.1 Field-Effect Transistors  Introduction  An Overview of Field-Effect.
1 Electronic Circuits TRANSISTOR PRINCIPLES & APPLICATIONS.
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
Power FETs are an integral power device, it’s ability to switch from on-state to off-state is crucial in quick switching devices. All the while also having.
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
Electronic Amplifiers 1 शनिवार, 29 अगस्त 2015 शनिवार, 29 अगस्त 2015 शनिवार, 29 अगस्त 2015 शनिवार, 29 अगस्त 2015 शनिवार, 29 अगस्त 2015 शनिवार, 29 अगस्त.
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 7: Field Effect Transistor by Muhazam Mustapha, October 2010.
Principles & Applications
Principles & Applications
Field Effect Transistor (FET)
CHAPTER 16 Power Circuits: Switching and Amplifying.
Intro to Mechatronics 18 February 2005 Student Lecture: Transistors
Device Physics – Transistor Integrated Circuit
Chapter 5: Field Effect Transistor
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 5-1 Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
Engineering 6806: Design Project 9/10/02 Engineering 6806 Power and Heat Michael Bruce-Lockhart.
Field Effect Transistors: Operation, Circuit Models, and Applications AC Power CHAPTER 11.
Flash Memory …and a tour through FETs. Junction Field Effect Transistor.
ECE 4991 Electrical and Electronic Circuits Chapter 2
Dr. Nasim Zafar Electronics 1 EEE 231 – BS Electrical Engineering Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Field Effect Transistors
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
CHAPTER 8 MOSFETS.
EE210 Digital Electronics Class Lecture 7 May 22, 2008.
McGraw-Hill 5-1 © 2013 The McGraw-Hill Companies, Inc. All rights reserved. Electronics Principles & Applications Eighth Edition Chapter 5 Transistors.
1 © Unitec New Zealand DE4401 F IELD E FFECT T RANSISTOR.
Current and Resistance CHAPTER OUTLINE 27.1 Electric Current 27.2 Resistance 27.4 Resistance and Temperature 27.6 Electrical Power.
Chapter 26 CURRENT ELECTRICITY Electric Current (I) –rate of positive charge passing through a surface I=dQ/dt –units Coulomb/Second = Ampere (C/s = A)
Classification of power amplifiers
 jc ( ° C/W): thermal resistance from transistor junction to transistor case  cs (°C/W): thermal resistance from transistor case to heat sink  sa (°C/W):
EMT 112 / 4 ANALOGUE ELECTRONICS Self-Reading Power Transistor – BJT & MOSFET.
CHAPTER 5 FIELD EFFECT TRANSISTORS(part a) (FETs).
Field Effect Transistors
FET FET’s (Field – Effect Transistors) are much like BJT’s (Bipolar Junction Transistors). Similarities: • Amplifiers • Switching devices • Impedance matching.
TRANSISTORS AND THYRISTORS
CHAPTER 10 AC Power Bipolar Junction Transistors: Operation, Circuit Models, and Applications.
POWER TRANSISTOR – MOSFET Parameter 2N6757 2N6792 VDS(max) (V)
BJT transistors.
MOSFET The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a semiconductor device which is widely used for switching and amplifying.
Check your Understanding
ECE Engineering Design Thermal Considerations
Principles & Applications
Presenter: Ujjwal Karki, PhD Candidate, PE Lab, MSU
ECE 442.
Current electricity Ch. 34
Presentation transcript:

1 Final Control Introduction Thermal Circuits –Thermal resistance –Heat Sinks –2N3904 example –OPA512 example JFET/MOSFET Review Summary

2 Types of Heat Sinks Ball Grid Array For: Intel AMD PowerPC Surface Mount, Wave Solderable, Snap-down

3 System Parameters Type of System Parameter QuantityPotentialTime ElectricalChargeEMF or Voltage Second LiquidVolumePressureSecond GasMassPressureSecond ThermalHeatTemperatureSecond MechanicalDistanceForceSecond

4 Defining Resistance Type of SystemChange inQuantity Parameter DescriptionName (SI Units) ElectricalCharge xfrd. per sec. Current (amperes) LiquidVolume Xfrd. per sec. Flow Rate (Cubic meters per second) GasGas xfrd. per sec. Flow Rate (kilograms per second) ThermalHeat xfrd. per sec. Flow rate of energy (joules per second) MechanicalDistance per sec. Velocity (meters per second)

5 Thermal Definitions RθRθ TJTJ TATA TCTC R θJC R θCA T= T J -T A J = junction C=case A=ambient P D = power dissipated PDPD

6 A simple thermal circuit P D = 120 mW =.12 W TJTJ TATA R θJA = C/W T = 24 0 C = T J – T A = P D *R θJA T J (max) = C Max power: BJT ~ P CE FET ~ P DS SCR ~ P AK

7 A complete thermal circuit with heat sink PDPD TJTJ TCTC TATA TSTS R θJC R θCS R θSA R θJC = Thermal Resistance from Junction to Case T R θSA = Thermal Resistance from Case to ambient R θCS = Thermal Resistance from Case to sink T

8 Common Cases

9 Mounting a heat sink

10 Mounting a TO-3 Heat Sink

11 2N3904 BJT Specs

12 BJT Amplifier Circuit: Spec says max. ambient temperature will be C Example 1: R θJA for the 2N3904 is C/W, V C = 10 volts V E = 1.05 volts V CE = 9 volts P D = 9*20 = 180 mW P D = 180 mW =.18 W TJTJ TATA R θJA T = 36 0 C = T J – T A = P D *R θJA T J (max) = C TO-92 Style Case

13 Adding a heat sink TO-92 Heat Sink From Digikey: R θSA = 64 0 C per Watt PDPD TJTJ TCTC TATA TSTS R θJC R θCS R θSA T From 2N3904 spec: R θJC = C per Watt From general: R θCS = 5 0 C per Watt R θTotal = C/Watt T = T J -T A = C P D = 180 mW =.18 W T J (max) = C

14 OPA Absolute Max Internal power Dissipation = 125 Watts

15 OPA512 Problem OPA512, 125W, 15A R θJA = 30 0 C/ Watt R θJC =.9 0 C/ Watt P D = 9*20 = 180 mW TJTJ TATA R θJA P D = (T J – T A )/R θJA = 110/30 = 3.67Watts T J (max) = CT A = 40 0 C Need 30 watt AC amplifier for an audio application. The max temp will be F First look at no heat sink: TJTJ TCTC TATA TSTS R θJC =.9 R θCS R θSA T 30 = (T J – T A )/R T =110/R T R T = C/Watt total So R θCS +R θSA = =2.77

16 TO3 Mounting Kit Mounting a TO-3 Heat Sink

17 Pentium 4 Heat Sink

18 Athlon Heat Sink

19 Power Derating Curve C 5 W 25 0 C 5W 125 = 25 0 C/WattR θJC =

20 JFET & MOSFET Review

21 IRL630 HEXFET Switching Power MOSFET R θJC = C/Watt (max) R θCS =.5 0 C/Watt (flat, greased surface) R θJA = 62 0 C/Watt (max)

22 Another Heat Sink Problem R θJC = C/Watt (max) R θCS =.5 0 C/Watt (flat, greased surface) R θJA = 62 0 C/Watt (max) Max continuous drain current = 9 amps R ds =.4Ω Max power dissipated = C Linear derating factor =.59 W/ 0 C = 2.02 WPD=PD= C 25 0 C PDPD T TJTJ TCTC TATA TSTS R θJC =1.7 R θCS =.5 R θSA T So the max power that can be dissipated is: R θJC +R θCS +R θSA = =6.2 0 C/W and P D =125/6.2=20.2W Best TO-220 at Digikey is: R θSA =4 0 C/W

23 CMOS: C omplementary Metal- Oxide Semiconductor CMOS is a widely used type of semiconductor. CMOS semiconductors use both NMOS (negative polarity) and PMOS (positive polarity) circuits. Since only one of the circuit types is on at any given time, CMOS chips require less power than chips using just one type of transistor.semiconductortransistor

24 Summary Thermal Circuits –Thermal resistance –Heat Sinks –2N3904 example –OPA512 example JFET/MOSFET Review –IRL630 Heat Sink example Next –Industrial Electronics SCR TRIAC DIAC –Stepping Motors