Power Semiconductor Devices for Low-Temperature Environments Space Power Workshop April 2004, Manhattan Beach, California
2 R. R. Ward, W. J. Dawson, L. Zhu, R. K. Kirschman GPD Optoelectronics Corp., Salem, New Hampshire O. Mueller, M. J. Hennessy, E. K. Mueller MTECH Laboratories, Ballston Lake, New York R. L. Patterson, J. E. Dickman NASA Glenn Research Center, Cleveland, Ohio A. Hammoud QSS Group Inc., Cleveland, Ohio Supported by NASA Glenn Research Center and ONR/DARPA
3 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
4 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
5 Temperatures for Spacecraft
6 Solar System Temperatures
7 Benefits of Using Low-Temp Electronics Reduce mass & volume Reduce power requirements Reduce spacecraft complexity Reduce disruption of environment Increase operating/mission time Increase overall reliability
8 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
9 Semiconductor Materials Comparison
10 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
11 Development Program Develop semiconductor devices: diodes and transistors Specifically designed for low temperatures For use down to 30 K ( ~ –240°C) and lower For spacecraft Power Management and Actuator Control
12 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
13 Ge Low-Temperature Power Diodes P- - N Bulk Design N– ( ) N+ implant P+ implantMetal Guard ring(s)
14 Ge LT Power Diodes - Forward
15 Ge LT Power Diodes - Forward
16 Ge LT Power Diodes - Forward I-V
17 Ge LT Power Diode - Forward I-V
18 Ge Power Diodes - Reverse Breakdown
19 Ge Power Diodes - Reverse Recovery
20 Ge Power Diodes - Reverse Recovery
21 Ge Power Diodes - Reverse Recovery
22 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
23 SiGe LT Power Diodes - Design (N+ implant) P+ SiGe Metal N– Si epi N+ Si
24 SiGe vs Si Power Diodes - Forward
25 SiGe vs Si Power Diodes - Forward
26 SiGe LT Power Diodes - Forward
27 SiGe LT Power Diodes - Forward
28 SiGe LT Power Diodes - Forward
29 SiGe LT Power Diodes - Reverse
30 SiGe LT Power Diodes - Reverse
31 SiGe LT Power Diodes - Reverse Recovery
32 SiGe LT Power Diodes - Reverse Recovery
33 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
34 Ge LT Power JFET or MISFET ~1.8 mm G S D S G
35 Lateral Ge MISFET Design Substrate contact Source Gate P+ implant P substrate Gate dielectric N+ implant Drain
36 Ge Power MISFET at +20°C 20 V 1 A ΔV GS = 1 V/step
37 Ge Power MISFET at –196°C (77 K) 20 V 1 A ΔV GS = 1 V/step
38 Ge Power MISFET at –269°C (4 K) 20 V 1 A ΔV GS = 1 V/step
39 Ge MISFET Switching - 50 kHz ~ 30 Load
40 Ge MISFET Switching - 5 MHz ~ 30 Load
41 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
42 Ge JFET Cross-Section (n-channel) Back gate contact Source Front gate P+ implant P+ substrate N epitaxial layer N+ implant Drain P+ implant
43 Power Ge JFET at +20°C 10 V 2 A ΔV GS = 1 V/step
44 Power Ge JFET at –196°C (77 K) 10 V 2 A ΔV GS = 1 V/step
45 Power Ge JFET at –269°C (4 K) 10 V 2 A ΔV GS = 1 V/step
46 Another Power Ge JFET at –253°C (20 K) 10 V 1 A ΔV GS = 1 V/step
47 Power Ge JFET at +20°C 50 V 1 A ΔV GS = 1 V/step
48 Power Ge JFET at –196°C (77 K) 50 V 1 A ΔV GS = 1 V/step
49 Power Ge JFET at –269°C (4 K) 50 V 1 A ΔV GS = 1 V/step
50 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
51 Ge SIT (Static Induction Transistor) Drain Source Gate N+ implant N– substrate P implant N+ implant
52 Ge SIT - FET-Like Region
53 Ge SIT - Triode-Like Region
54 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
55 Ge Bipolar - Double-Implant Collector Base Emitter N+ implant N– substrate P implant N+ implant
56 Ge BJT at +20°C 10 V 0.1 A ΔI B = 0.5 mA/step
57 Ge BJT at –196°C (77 K) 10 V 0.1 A ΔI B = 1 mA/step
58 Ge and Si Bipolar Comparison
59 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
60 SiGe HBT (Heterojunction Bipolar Transistor) ~0.5 μm n+ Si ~0.4 μm p SiGe ~20 μm n– Si Emitter contact ~300 μm n+ Si Collector contact Base contact
61 SiGe HBT at +20°C 20 V 0.2 A ΔI B = 1 mA/step
62 SiGe HBT at –196°C (77 K) 50 V ΔI B = 0.5 mA/step 0.2 A
63 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
64 Summary Electronics capable of low-temperature operation will be important for spacecraft (cold environments and space observatories) We have been developing semiconductor devices for operation down to ~20 K (~ –250°C) We are basing the devices on Ge and SiGe We have developed Ge low-temperature power diodes, junction field-effect transistors (JFETs), and metal-insulator- semiconductor field-effect transistors (MISFETs) We are in process of developing SiGe low-temperature power diodes, metal-insulator-semiconductor field-effect transistors (MISFETs), and heterostructure bipolar transistors (HBTs)
65 Outline Why low-temperature electronics for space? Semiconductor materials options Development program Designs and results Diodes: Ge & SiGe FETs: Ge MISFETs, Ge JFETs & Ge SITs Bipolars: Ge BJTs & SiGe HBTs Summary Future
66 Future Continue to develop low-temperature power SiGe diodes, SiGe bipolar transistors, SiGe MOS field-effect transistors Investigate low-temperature power SiGe IGBTs Proposed development of low-temperature power thyristors (SCRs)