Embryonic Development

Slides:



Advertisements
Similar presentations
Homeobox Genes Body organisation.
Advertisements

Homeobox Genes Body organisation.
Differential Gene Expression
Embryonic Development & Cell Differentiation. During embryonic development, a fertilized egg gives rise to many different cell types Cell types are organized.
2.E.1 timing and coordination
4.A.3 Cell Specialization Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues and organs.
Chapter 21 Reading Quiz 1. When cells become specialized in structure & function, it is called … 2. Name 2 of the 5 “model organisms”. 3. What does it.
21.1 – 1 As you learned in chapter 12, mitosis gives rise to two daughter cells that are genetically identical to the parent cell. Yet you, the product.
Development, Stem Cells and Cancer
Developmental Stages in an Amphibian. LE 21-4 Animal development Zygote (fertilized egg) Eight cellsBlastula (cross section) Gastrula (cross section)
Chapter 21 The Genetic Basis of Development. Model Organisms.
Gene Expression and Development. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Some review during class on Friday.
Development. How does a fertilized egg cell become an animal? Figure 16.2 (a) Fertilized eggs of a frog 1 mm (b) Newly hatched tadpole 2 mm.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
AP Biology Development. AP Biology Big Questions: 1. How does a multicellular organism develop from a zygote? 2. How is the position of the parts of an.
Chapter 21: The Genetic Basis of Development
Chapters 19 - Genetic Analysis of Development: Development Development refers to interaction of then genome with the cytoplasm and external environment.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
CHAPTER 21 THE GENETIC BASIS OF DEVELOPMENT Section A: From Single Cell to Multicellular Organism 1.Embryonic development involves cell division, cell.
How is Gene Expression Controlled? Transcriptional Control (whether gene is transcribed or not) –Operon: series of genes that code for specific products,
Genetics and Development
Chapter 21 The Genetic Basis of Development. Introduction The development of a multicellular organism from a single cell is one of the most fascinating.
Chapter 21 The Genetic Basis of Development. Zygote and Cell Division F When the zygote divides, it undergoes 3 major changes: F 1. Cell division F 2.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 21 The Genetic Basis of Development.
© 2011 Pearson Education, Inc. Ch 21 Introduction How does a single fertilized egg cell develop into an embryo and then into a baby and eventually an adult?
The Genetic Basis of Development
Lecture #9 Date______ Chapter 21~ The Genetic Basis of Development.
Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism.
The Genetic Basis of Development How do cells with the same genes grow up to be so different?
Chapters 47 & 21 Animal Development & The Genetic Basis of Development.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Genetics and Development
Development and Genes Part 1. 2 Development is the process of timed genetic controlled changes that occurs in an organism’s life cycle. Mitosis Cell differentiation.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
PRINCIPLES OF EMBRYONIC DEVELOPMENT © 2012 Pearson Education, Inc.
Chapters 19 - Genetic Analysis of Development:
Objective 7 TSWBat recognize the basic steps on the embryonic development of organisms and the role that gene expression plays in that development.
Chapter 21: The Genetic Basis of Development Model organisms for study of development.
The Genetic Basis of Development Ms. Gaynor AP Biology
Patterns in Development Pattern formation must be established via induction prior to morphogenesis. The pattern formation is related to the body plan (its.
Development of a complex multicellular organism is more than just mitosis- we certainly do not look like gigantic fertilized eggs. Zygote -> many specialized.
IP 28: Organisms Development EK 2E1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
LE 21-11a Sperm Molecules of a cytoplasmic determinant Fertilization Nucleus Molecules of another cytoplasmic determinant Unfertilized egg cell Zygote.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 18 – Gene Regulation Part 2
Development.
Genetic Basis of Embryonic Development
Chapter 21 Reading Quiz When cells become specialized in structure & function, it is called … Name 2 of the 5 “model organisms”. What does it mean to be.
Development, Stem Cells, and Cancer
Genes and Development CVHS Chapter 16.
Chapter 21 The Genetic Basis of Development.
The Genetic Basis of Development
Determination commits a cell to its final fate
Development, Stem Cells, and Cancer
Genetics and Development
SGN24 The Genetic Basis of Development
The Genetic Basis of Development
The Genetic Basis of Development
Genetics and Development
The Genetic Basis of Development
The Genetic Basis of Development
The Genetic Basis of Development
CHAPTER 11 The Control of Gene Expression
Describe how Dolly the sheep was cloned.
The Genetic Basis of Development
The Genetic Basis of Development
Reproduction & Development
Presentation transcript:

Embryonic Development Timing and coordination of gene activation

Genetic Basis of Development Figure 21.8 Agenda Turn in your take-home quiz (Place on music stand) Timing and coordination of development Cytoplasmic Determinants and the maternal effect Induction through cell signaling Homeotic Genes and segment determination Apoptosis Science Skills Practice (Homework if we don’t get to it) “Copy Cat”

Cell Division - Morphogenesis –Differentiation Figure 21.4a, b Animal development. Formation of three germ layers, body cavity, gut, and nervous system. Cells actively migrate during development. Certain cells in each developed tissue remain as partially differentiated stem cells to replace cells that are old or damaged. Plant development. Morphogenesis involves cell division and selective cell expansion. Cells cannot move. The apical meristems located in the roots and shoots remain undifferentiated throughout the plants life for growth. Zygote (fertilized egg) Eight cells Blastula (cross section) Gastrula Adult animal (sea star) Cell movement Gut Cell division Morphogenesis Observable cell differentiation Seed leaves Shoot apical meristem Root Plant Embryo inside seed Two cells (a) (b)

Evidence that all cells in a developed organism have all the genetic material Figure 21.6 EXPERIMENT Researchers enucleated frog egg cells by exposing them to ultraviolet light, which destroyed the nucleus. Nuclei from cells of embryos up to the tadpole stage were transplanted into the enucleated egg cells. Frog embryo Frog egg cell Frog tadpole Less differentiated cell Donor nucleus Transplanted Enucleated egg cell Fully differentiated (intestinal) cell transplanted Most develop into tadpoles <2% develop Why are the fully differentiated cells less successful in developing into tadpoles?

Timing and coordination of development Cells specialize by activating master control genes What is the function of master control genes? DNA OFF mRNA Another transcription factor MyoD Muscle cell (fully differentiated) MyoD protein (transcription factor) Myoblast (determined) Embryonic precursor cell Myosin, other muscle proteins, and cell-cycle blocking proteins Other muscle-specific genes Master control gene myoD Nucleus 1 2

How do cells know which master control genes to activate during differentiation and morphogenesis? Cytoplasmic Determinants and the maternal effect Induction by cell signaling

Induction: Cell signaling changes gene expression Figure 21.11b Signal transduction pathway receptor molecule (inducer) Induction by nearby cells. The cells at the bottom of the early embryo depicted here are releasing chemicals that signal nearby cells to change their gene expression. NUCLEUS Early embryo (32 cells) Cell signals made by cells early on in in differentiation Affect transcription factors in the nucleus of cells near by Change gene expression of target cell

Pattern Formation in Drosophila Translation of bicoid mRNA Fertilization Nurse cells Egg cell bicoid mRNA Developing egg cell Bicoid mRNA in mature unfertilized egg 100 µm Bicoid protein in early embryo Anterior end (b) Gradients of bicoid mRNA and Bicoid protein in normal egg and early embryo. 1 2 3 Figure 21.14b Bicoid mRNA is placed in the egg cell by nurse cells (maternal effect) There is a gradient of Bicoid mRNA and Protein What experimental evidence suggests that high Bicoid protein concentration causes Anterior (head) segments develop?

C. elegans- a model of induction What experimental evidence showed that cell to cell signaling or cell to cell contact between adjacent cells was essential for correct differentiation and morphogenesis? 4 Anterior EMBRYO Posterior Receptor Signal protein daughter cell of 3 Will go on to form muscle and gonads form adult intestine 1 2 3 Induction of the intestinal precursor cell at the four-cell stage. (a)

Cytoplasmic Determinants Figure 21.11a Unfertilized egg cell Molecules of a a cytoplasmic determinant Fertilization Zygote (fertilized egg) Mitotic cell division Two-celled embryo Nucleus mRNA, protein or other signaling molecules in the cytoplasm of the unfertilized egg Unevenly distributed Mitosis creates cells with different sets of cytoplasmic determinants How might these cytoplasmic determinants regulate gene expression? Molecules of another cyto- plasmic deter- minant

Homeotic Genes Homeotic genes are regulatory genes that determine where certain anatomical structures, such as appendages, will develop in an organism during morphogenesis. These seem to be the master genes of development Mutant with legs growing out of head Normal What are the functional (protein) products of Homeotic genes that enable them to determine cell fate? What part of the DNA would they interact with?

Four general phases for body formation Organize body along major axes Organize into smaller regions (organs, legs) Cells organize to produce body parts Cells themselves change morphologies and become differentiated

Programmed Cell Death (Apoptosis) Cell signaling is involved in programmed cell death Is essential for normal development. 2 µm Figure 21.17

Apoptosis is essential for morphogenesis of hands and feet Figure 21.19 Interdigital tissue 1 mm

Homeotic Genes and Evolution  What is the evidence that homeotic genes are evolutionarily conserved? What does this figure mean?  Adult fruit fly Fruit fly embryo (10 hours) Fly chromosome Mouse chromosomes Mouse embryo (12 days) Adult mouse Figure 21.23

A. Drosophila's eight Hox genes in a single cluster and 39 HOX genes in humans. B. Expression patterns of Hox and HOX genes along the anterior-posterior axis in invertebrates and vertebrates.

Hox genes in the Animal Kingdom: increasing numbers and types of Hox genes (animal homeotic genes), increased body plan complexity

Hox genes determine the number and types of vertebrae in animals How does homeotic gene regulation help organisms evolve different body plans? Hox genes determine the number and types of vertebrae in animals Hoxc-6 determines that in the chicken the 7 vertebrae will develop into ribs Snake: Hoxc-6 is expanded dramatically toward the head and toward the rear so all these vertebrae develop ribs.

Start homework! Science Skills Practice: how do we know enhancers regulate gene expression Science Skills practice: Hox genes and segment development