미생물을 이용한 축사 파리 및 암모니아 저감 기술의 개발 발 표 자 건국대학교 송 민 동 2003 년도 충북지역환경기술개발센터 최종 평가회 발표자료 2004. 01. 13.

Slides:



Advertisements
Similar presentations
General Microbiology Lecture Twelve Identification of Bacteria
Advertisements

Foundations in Microbiology
IDENTIFIKASI BAKTERI OLEHSUDRAJAT FMIPA UNMUL 2009.
Chapter 16-Microbial Insecticides Insecticidal toxin of Bacillus thuringiensis Genetic engineering of Bt toxin genes Baculoviruses as biocontrol agents.
1 Culture and identification of infectious agents, Lecture 25 Dr. Alvin Fox.
Antimicrobial Susceptibility Testing – Part II
Introduction In addition to general-purpose media, which allow the growth of most types of bacteria, microbiologists use specialized media to identify.
1 Culture and identification of infectious agents Dr. Abdullatif Neamatallah.
General Microbiology Laboratory Biochemical Tests.
1 How do you study something that you cant see? You look at it under the microscope –But certain microbes (e.g. bacteria) do not have too many identifying.
Lab 8&9 Goals and Objectives : Exercise 37: Morphological Study of Unknown Bacterium Exercise 38: Cultural Characteristics Discuss observations of the.
Biosorption of zinc by living and lyophilized biomass of Bacillus cereus DAA54 and Pseudomonas aeruginosa DAA86 Presented by: Abugharbia M. A.
Culture media lecture (1)
Detecting Mutagens and Carcinogens. introduction - Increased number of chemicals used and present as environmental contaminats, testes for the mutagenicity.
Methods in Microbial Ecology
Genetic Engineering learning outcomes
PHT382 Lab. No.1.
Lab. No. 3. Gram’s +ve Bacilli Spore forming Non spore forming AerobicAnaerobic Bacillus Clostridium Corynebacterium.
Media Preparation & Sterilization
Introduction recombinant expression of protein disulfide isomerase (PDI) using the model plant Arabidopsis thaliana Eun Ju Cho ABE workshop 2007.
Questions for Microbiology (practical)
Molecular Biology & Biotechnology
Isolation and Characterization of MRSA at UW-Eau Claire Hannah Stage, Hannah Samuel and  Faculty Mentor Dr. Sasha Showsh  Biology  University of Wisconsin-Eau.
KEYS Lab Training DNA Barcoding: Identification of Species
Page 1 Investigation of Bacillus thuringiensis Cry1Aa toxicity to Ephestia kuehniella (Lepidoptera: Pyralidae) Souad Rouis, Maissa Chakroun, Nouha Abdelmalek.
Isolating and Purifying Novel Antibiotics from Soil Bacteria Heather Fisher, Department of Biological Sciences, York College of Pennsylvania Introduction.
Lab 7 Goals and Objectives: Read the results: Gather all plates and tubes so we can discuss results together: ***Do NOT shake the FTM tubes!!!*** Your.
Expression, Purification and Isolation of the MinE protein By Arsalan Wasim and Nicholas Wong.
Culturing of Bacteria.
ISOLATION AND CHARACTERIZATION OF E. coli FROM THE MEAT SAMPLES By By BHAWNA SINGH BHAWNA SINGH Under the supervision of Under the supervision of Dr. Purushottam.
Supplementary Methods TEM (transmission electron microscopy). TEM analysis were performed on EF-TEM LEO 912AB (Carl Zeiss Inc., Germany, Korea Basic Science.
MICROSCOPES. Microscopes Microscope : an instruments used to examine very small objects (Specimens) in microbiology. Functions : To allow us to study.
Counting Microorganisms. Methods Turbidity measurements Viable counts Most probable number Direct counts.
第一組 : 黃潔儀 葉冠諝 黃建國 指導教授 : 褚俊傑老師 日期 : Introduction.
University of Tabuk Faculty of Applied Medical Science
Lab 8 Goals and Objectives: Do not disrupt BHI broths: need to see surface growth. Do not shake FTM tubes Make all Gram stain smears from broth & plates.
Working with yeast Microbiologists have developed techniques for isolating and maintaining strains in the laboratory Strains: microorganisms of the same.
FACTORS INFLUENCING THE SYNTHESIS OF POLYHYDROXYBUTYRATE DEPOLYMERASE IN STREPTOMYCES SP. 5A Matthew B. Persinger, Matthew Shull, and Stephen F. Baron,
Lab. No. 4 (A). StaphylococciStreptococciMicrococci NeisseriaCorynbacterium Clostridum Bacillus Enterobacteriaceae Pseudomonas. Bacteria Gram’s Stain.
Urease test.
313 PHT LAB#1 ☠ Lab coat & marker. ☠ No eating, drinking, ☠ Benches disinfection. ☠ Inoculating loop sterilization. ☠ Aseptic technique. ☠ Discarded.
Methods for detecting resistance Goal: To determine whether organism expresses resistances to agents potentially used for therapy Designed to determine.
Bacterial identification
Diagnosis of Bacterial Infection Bacterial Cultivation
Microbiology / Lab. 8. o Culture (Growth) Media I.What is a medium (plural media)? II.What is culture medium? III.What is meant by Inoculation of Media?
Lab #8. Review of Lab #7 - pH Indicators pH Indicator Very acidic AcidicNeutralBasic Phenol red- pH 8.0 = magenta/
Lab #10.
Counting Microorganisms
IN THE NAME OF ALLAH ALMIGHTY THE MOST COMPASSIONATE THE MERCIFUL.
Susceptibility (Sensitivity) Testing: Results Pharmaceutical Microbiology – Practical Course Semester One_ Sensitivity Results & MIC Broth Dilution/
Biochemical Activities of Microorganisms Part (1)
Laboratory: Unit 3: Gram stain & microscopy; inoculate broth (pages 52-53) Lecture: PCR & ribosomal RNA-based phylogeny In-Class Writing: describe colonies.
LAB:3 CULTURE MEDIA.
Investigating extracellular Enzymes of microorganisms.
Preparation of Midi-Scale Plasmid DNA from E
Tools of the Laboratory:
Protein Overexpression in E. coli and
NAS Lecturer: Mr. M. Zivuku LECTURE 4 1 Objectives By the end of this unit, you should be able to ; Explain the cultivation of bacteria in terms of in.
LABORATORY DIAGNOSIS OF INFECTIOUS DISEASES
Starter Decide whether the following statements relate to optical methods or dilution plating: Takes a very long time Uses a colorimeter Requires very.
Exercise 38: Cultural Characteristics (Gelatin) put on ice!!!
Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide  Mostafa FN Abushahba,
Increase in number of cells, not cell size Populations Colonies
Microbiology: A Systems Approach
Screening for Methicillin-Resistant Staphylococcus spp
Jane L. Burns, Jean-Marc Rolain  Journal of Cystic Fibrosis 
Dinty J. Musk, David A. Banko, Paul J. Hergenrother 
Media Preparation & Sterilization
B. subtilis GS67 Protects C
Methods in Clinical and diagnostic Microbiology (Part Two)
Presentation transcript:

미생물을 이용한 축사 파리 및 암모니아 저감 기술의 개발 발 표 자 건국대학교 송 민 동 2003 년도 충북지역환경기술개발센터 최종 평가회 발표자료

Introduction  축사의 파리는 가축 질병을 전염시키는 주요 매개체일뿐만 아니라 가축 및 사람에게 스트레스를 주는 주요 원인  가축 호흡기 발생의 주요 원인인 가축분뇨로부터의 암모니아 저감 필요함.  지역특성상 환경친화적 축산 요구됨. 연구배경

 축산분뇨에서 발생하는 암모니아는 악취의 가장 큰 원인  가축의 호흡기 질병의 원인인 악취제거 필요  파리 발생 억제에 따른 질병 사전예방 필요  항생제 사용 감소로 환경친화적 축산환경조성 필요  충북지역 특성상 환경친화적 축산이 절대적으로 필요 연구의 필요성

연구목적  축사 파리발생 억제를 위한 미생물의 분리 및 특성 조사  축사 암모니아 발생 저감을 위한 미생물의 분리 미생물을 이용한 축사 파리 및 암모니아 저감 기술의 개발

 일본의 미생물학자가 병든 누에 (Bombyx mori) 로부터 Bacillus 를 분리 (Bacillus thuringiensis : Bt)  Gram-positive bacteria  결정형태의 insecticidal crystal protein 생산  δ-endotoxin ; ICPs(Insecticidal crystal proteins) * Cry1, Cry2, Cry3, Cry4 - Toxic * cytolysin(cyt) – Non-Toxic Bacillus thuringiensis 의 δ-endotoxin 에 관한 연구 현황 균주의 특성

Bacillus thuringiensis 의 δ-endotoxin 에 관한 연구 현황 연구기작 및 동향  살충 특이성을 가진 결정체 단백질의 생산은 포자형성 시  서로 다른 단계동안 RNA polymerase 의 시그마 인자와 함께, 영양성장과 포자형성 자극  포자형성의 개시는 세포내의 GTP 농도에 의해 조절  δ-endotoxin 의 생성은 유도성을 지님  현재 국내외적으로 내독소 단백질 분해 미생물에 관한 연구가 활발히 진행 중  지금까지 주된 연구 방향은 주로 나비목에 치중되어져 있다  파리목에 관한 연구 및 미생물 제제화 연구는 아직 개발단계

토양으로부터 유용 균주의 분리 분리 균주의 특성조사 성장곡선 분리 균주의 동정 생화학적 특성 전자현미경을 이용한 형태학적 특성 다양한 항생제에 대한 최소억제농도 (MIC) 조사 delta-toxin 의 정제 및 특성 정제산물 연구내용 1

cry gene profile 분석 Endospore 및 crystal protein 생산조건 확립 분리 균주의 효소활성 측정 Multiplex PCR Crystal protein 특성조사 SDS-PAGE 2

0.1M sodium acetate in 10ml NB Soil 1g vortexShaking incubation for 6hr at 30 ℃ Heating for 10min at 100 ℃ Spreading on GYS medium Incubation for 24hr at 30 ℃ Bacillus thuringiensis strain selection Spreading on nutrient agar (NA) Subcultured Bacillus thuringiensis k-1 Isolation of Bacillus thuringiensis Strain

Insect Bioassay for B. thuringiensis Selection M. Domestica (larvae) were obtained from a pig farm near Chungju city (Korea) Subcultured Bacillus thuringiensis k-1 Inoculation in 10ml NB medium Shaking incubation at 37 ℃ Shaking incubation for 3days at 30 ℃ in GYS medium (until 10 7 to 10 8 spores/ml) 1ml Centrifugation at 10,000g for 20min at 4 ℃ pelletssupernatant Three times washing with dH2O and sample dilution (10 배, 100 배 ) Insect Bioassay against fly larvae (M. domestica)

B. thuringiensis strains No. of larvae tested No. of the dead Mortality (%) Control3000 Bt k-1 (original amount) Bt k-1 (supernatant ) Larvae mortality was determined after incubation at room temperature (25±2 ℃ ) for 72h using 10 5 to 10 6 spores/ml. Larvae mortality was determined after incubation at room temperature (25±2 ℃ ) for 72h using 10 5 to 10 6 spores/ml. Table 1. Bio-toxicity of Bacillus thuringiensis k-1 against fly larvae (M. domestica)

Growth curve of Bacillus thuringiensis k-1 Use of Media : Nutrient Broth (NB, 0.3% beef extract, 0.5% peptone) Culture Condition : 48hr, 37 ℃ Fig. 1. Growth curve of Bacillus thuringiensis strain k-1 Stationary phase

Biochemical Characteristics of B. thuringiensis k-1 Use of Identification Kit : API CHB 50 kit and Medium Culture Condition : 24hr, 37 ℃ +Gelatin hydrolase +Nitrate reduction -Indole production -Tryptophan deaminase -Urease -H 2 S production +Citrate utilization -Ornithine decarboxylase -Lysine decarbosylase -Arginine dihydrolase +Beta-Galactosidase +Acid from glucose +Voges-Proskauer +Catalase +Spore formation RodCell form +Motility +Gram staining Bacillus thuringiensis k-1Characteristics Table 2. Morphological and biochemical properties of Bacillus thuringienis k-1

Table 3. Biochemical characteristics ( carbohydrates ) of Bacillus thuringiensis k-1 page 1 CharacteristicsB. thuringiensis k-1CahracteristicsB. thuringiensis k-1 Glycerol+Salicine+ Erythritol-Cellobiose+ D-Arabinose-Maltose+ L-Arabinose-Lactose- Ribiose+Melibiose- D-Xylose-Saccharose+ L-Xylose-Trehalose+ Adonitol-Inuline- Beta-Methyl-xyloside-Melezitose- Galactose-D-Raffinose- D-Glucose+Amidon+ D-Fructose+Glycogen+ D-Mannose+Xylitol- L-Sorbose-Beta-Gentiobiose-

page 2 CharacteristicsB. thuringiensis k-1CahracteristicsB. thuringiensis k-1 Rhamnose-D-Turanose- Dulcitol-D-Lyxose- Inositol-D-Tagatose- Mannitol-D-Fucose- Sorbitol-L-Fucose- Alpha-Methyl-D- mannoside -D-Arabitol- Alpha-Methyl-D- Glucoside -L-Arabitol- N Acetyl glucosamine+Gluconate- Amygdaline+2 aceto-gluconate- Arbutine+5 aceto-gluconate- Esculine+ +, Positive; -, Negative

Electron Microscopy (TEM, Transmission Electron Micrographs) Strain k-1 was grown for 3days in GYS medium at 30 ℃ Sample was blocked in 4% agar Sample was fixed with Karnowsky`s fixative and then postfixed in 1% OsO 4 Sample was dehydrated through an ethanol-propylene oxide series and embedded in Epon 812 Thin sections were cut on ultramicrotome, stained with 1% uranyl acetate and lead citrated Photographed Fig. 2. Transmission electron micrographs of sporulating of Bacillus thuringiensis k-1 amplified 25,000× (A). Parasporal crystal (c) and spore (e).

The test was performed with the use of serial 2-fold dilutions of each antibiotic as described by Cleeland et al. The resistance of Bacillus thuringiensis k-1 against antibiotics was examined after cultivation for 18hr at 37 ℃. Inoculation of Bacillus thuringiensis 1.95ug0ug 1.95ug0ug 1000ug/ml500ug/ml250ug/ml125mg/ml62.5ug/ml31.3ug15.6ug 7.8ug3.9ug Shaking incubate, 18hrs, 37 ℃ 1000ug/ml500ug/ml250ug/ml125mg/ml62.5ug/ml31.3ug15.6ug7.8ug3.9ug MIC value antibiotics Antibiotics susceptibility of B. thuringiensis k-1

Strain k-1 Kurstaki (HD-1) Israelensis (HD-522) Ampicillin Kanamycin< Oxacillin Colistin Tetracycline Penicillin G 125>1000>1000 Erythromycin250<1.95<1.95 Neomycin Table 4. Determination of minimum inhibitory concentration of various antibiotics against B. thuringiensis k-1, B. thuringiensis subsp. kurstaki (HD-1) and B. thueingiensis subsp. israelensis (HD-522).

Purification of insecticidal proteins from strain k-1 B. thuringiensis was grown for 3 days in the GYS medium at 30 ℃ and 180rpm until complete autolysis was achieved. Purification crystal proteins was carried out by discontinuous sodium bromide (NaBr) gradients of 30% to 70%. Fig. 3. SDS-PAGE of Bacillus thuringiensis k-1 crystal proteins purified. M, molecular marker; arrows indicate Cry proteins of ~130, ~80, ~60kDa. 130kD 80kD 60kD

Multiplex PCR for rapid determination of cry genes The extended multiplex PCR screening is a rapid method for detection and differentiation of Bacillus thuringiensis field strains and for prediction their insecticidal activities in order to direct them for subsequent toxicity assays against Lepidoptera, Coleoptera, and Diptera. The 10 primers contained eight forward primers and two reverse primers for cry1 gene determination used in this study. To identify cry4, one forward and one reverse primer used in reaction. CompositionVol.unitTemp.Timecycle Template15ul952min1cycle Primer (F) each 1ul8ul200uM Primer (R) each 1ul2ul200uM951min 10X buffer8ul522min30cycle Ex Taq.0.5ul0.5U723min 2.5mM dNTPs4ul200uM dH 2 O12.5ul727min1cycle Total volume 50ul Table 5. The optimal conditions of polymerase chain reaction (PCR).

Fig 4. PCR survey of B. thuringiensis k-1 and B. thuringiensis subsp. kurstaki for cry1 contents. Total DNA samples from B. thuringiensis k-1 and B. thuringiensis subsp. kurstaki were analyzed by PCR with a mixture of cry1 specific primers. Lane M: Bio basic 100bp-1kb ladder; lane 1, B. thuringiensis k-1; lane 3, B. thuringiensis subsp. kurstaki ; M: Bio basic 100bp-1kb ladder

Culture conditions for viable cell growth and endospore formation (crystal protein) in 10ml various media Shaking incubation for 8h, 12h and 16h at 30 ℃ 2. Heating for 10min at 100 ℃ Spreading on NA medium Incubation for 12h at 30 ℃ Inoculation of Bacillus thuringiensis k-1 1. Direct spreading Total and endospore forming cell counting

TimeMediaViable cellEndospore NB2.0x x10 4 MED21.2x10 8 8BHI4.0x10 8 GYS4.6x10 4 PGY2.4x10 8 NB1.4x x10 5 MED21.8x BHI2.6x x10 5 GYS8.2x x10 5 PGY1.3x10 8 NB3.6x x10 6 MED26.4x BHI1.1x10 7 GYS1.7x x10 6 PGY1.5x10 6 Table 6. Viable cell and endospore forming cell in various culture conditions ( CFU/ml )

Enzyme activities of Bacillus thuringiensis k-1 EnzymeSubstrate (basal medium: NA 1 )DyeIdentification Protease2%(w/v) skim milk-Clear zone Cellulase(CMCase)1%(w/v) CMC 2 0.2%(w/v) congo red sol.Clear zone Amylase1%(w/v) soluble starch0.2%(w/v) I 2 +2%(w/v) KI sol.Clear zone Xylanase1%(w/v) oat spelt xylan-Clear zone Table. 7 Screening media and dyes used for the detection of various enzyme activities 1 Nutrient agar (0.3% beef extract, 0.5% peptone, 1.5% agar) 2 Carboxymethyl cellulose (medium viscosity) Table. 8 Enzyme activities of Bacillus thuringiensis k-1 ItemsXylasnaseProteaseCellulaseAmylase Enzyme activity Size of clear zone(mm) (Width of colony / Width of clear zone) 6.5/ /9.05.0/5.55.0/ represents excellent clear zone formation; ++ good; + fair

암모니아 저감을 위한 복합효소 생산 미생물의 분리 및 동정 토양으로부터 유용 균주의 분리 및 선발 분리 선발 균주의 특성 조사 분리 선발 균주의 동정 형태학적 특성 효소활성 측정 생화학적 특성

Isolation of the strain having multi-enzyme activities in 9ml 0.85% NaCl Soil 1g vortexingShaking incubation for 6hr at 37 ℃ Spreading on nutrient agar medium Incubation for 24hr at 37 ℃ Identification Inoculation on enzyme screening mediums (amylase, cellulase, and protease) Clear zone detection Incubation for 12hr at 37 ℃

Enzyme activities of Bacillus sp. strains EnzymeSubstrate (basal medium: NA 1 )DyeIdentification Protease2%(w/v) skim milk-Clear zone Cellulase(CMCase)1%(w/v) CMC 2 0.2%(w/v) congo red sol.Clear zone Amylase1%(w/v) soluble starch0.2%(w/v) I 2 +2%(w/v) KI sol.Clear zone Table. 9 Screening media and dyes used for the detection of various enzyme activities 1 Nutrient agar (0.3% beef extract, 0.5% peptone, 1.5% agar) 2 Carboxymethyl cellulose (medium viscosity) Fig 5. Protease, cellulase, and amylase activities of 1 st isolated strains

Enzyme activity 3 Strain Growth 1,2 at 37 ℃ CMCaseProteaseAmylase Table 10. Enzyme activities of 1 st -selected microorganisms 1 The rate of growth was evaluated after 12hr on nutrient agar represents excellent growth represents excellent clear zone formation on screening medium ++; good, +; fair, -; no clear zone formation ++; good, +; fair, -; no clear zone formation

Fig 5. Protease, amylase, and cellulase activities of the finally isolated 5-1 Protease Cellulase Amylase

Identification of the selected strain Use of Identification Kit : API CHB 50 kit and Medium Result: Bacillus subtilis +Gelatin hydrolase +Nitrate reduction -Indole production -Tryptophan deaminase -Urease -H 2 S production +Citrate utilization -Ornithine decarboxylase -Lysine decarbosylase -Arginine dihydrolase +Beta-Galactosidase +Acid from glucose +Voges-Proskauer +Catalase +Spore formation RodCell form +Motility +Gram staining 5-1Characteristics Table 11. Morphological and biochemical properties of 5-1

page 1 Table 12. Biochemical characteristics (carbohydrates) of 5-1 page 1 Characteristics5-1Cahracteristics5-1 Glycerol+Salicine+ Erythritol-Cellobiose+ D-Arabinose-Maltose+ L-Arabinose+Lactose- Ribiose+Melibiose+ D-Xylose+Saccharose+ L-Xylose-Trehalose+ Adonitol-Inuline+ Beta-Methyl-xyloside-Melezitose- Galactose-D-Raffinose+ D-Glucose+Amidon+ D-Fructose+Glycogen+ D-Mannose+Xylitol- L-Sorbose-Beta-Gentiobiose-

page 2 Characteristics5-1Cahracteristics5-1 Rhamnose-D-Turanose+ Dulcitol-D-Lyxose- Inositol+D-Tagatose- Mannitol+D-Fucose- Sorbitol+L-Fucose- Alpha-Methyl-D- mannoside -D-Arabitol- Alpha-Methyl-D- Glucoside +L-Arabitol- N Acetyl glucosamine-Gluconate- Amygdaline+2 aceto-gluconate- Arbutine+5 aceto-gluconate- Esculine+ +, Positive; -, Negative

파리유충에 활성을 나타내는 δ- endotoxin 생산 B. thuringiensis 균주 분리 및 동정 ( 형태학적, 생화학적 특성 조사 ) 완료 δ-endotoxin 단백질 정제, 특성조사 및 보유 유전자 검색 완료 파리유충 외피분해를 위한 chitinase 생 산 미생물 분리 확보 결 론 [PART I] 미생물을 이용한 축사 파리 저감 기술의 개발

축 분뇨의 암모니아 발생 저감을 위해 우선적으로 각종 효소활성이 높아 사료첨가 시 사료의 단백질 이용효율 제고를 통한 축 분내 암모니아 발생 저감을 목적으로 하 는 미생물 균주 분리 효소활성이 가장 우수하며 urease 활성이 없는 ( 암모니 아로의 전환 없음 ) 5-1 균주 최종선발 및 동정완료 (Bacillus subtilis) 암모니아의 질산화에 관여하는 Denitrobacter sp. 및 암 모니아와 함께 분뇨냄새의 주 원인물질인 휘발성지방산 과 이산화황을 이용하는 광합성세균 (photosynthetic bacteria) 확보 미생물을 이용한 암모니아 저감 기술의 개발 결 론 [PART II]

본 과제 성과물 논문 1 편 ( 한국 학술진흥재단 등재학술지 이상 ) 특허출원 ( 진행 중 )