The Building Blocks of Life Biomolecules The Building Blocks of Life
Biomolecules are Organic Molecules Molecules containing Carbon, Hydrogen, Nitrogen, and Oxygen. 2. They make up living organisms Examples: Methane (CH4) Glucose (C6H12O6) are all organic molecules Carbon is the central atom and will bond covalently because of the 4 valence electrons (outermost shell) total of 6 electrons. CHONP
Elements Lipids - Primarily C, H and some O Carbohydrates – C, H, O in a 1:2:1 ratio Proteins – C, H, O, N Nucleic Acids – C, H, O, N, P
Biomolecules Basic Molecule: Proteins, Carbohydrates (sugars), Lipids (Fats), Nucleic Acid (DNA, RNA) Macromolecule: Large molecules of the above that can be broken down. Ex. Starch into sugar / polysaccharide (starch) into monosaccharide (glucose)
Biomolecules with Examples Monomers: The smaller molecules that are the building blocks of macro molecules Carbohydrate – sugar or, monosaccharide ex.’s - glucose, galactose, fructose Protein – amino acids ex.’s – meat, poultry, eggs, beans, soy, nuts, ENZYMES Lipid – glycerol & 3 fatty acids ex.’s – fats, oils, waxes, Cell Membranes Nucleic acids – nucleotides ex.’s – DNA = deoxyribonucleic acid, RNA = ribonucleic acid
Monomers / Polymers continued 2) Polymer: a chain of monomers Carbohydrate – starch, glycogen, cellulose/Polysaccharides Lipids – none Proteins – protein / polypeptide chain Nucleic Acid – DNA, RNA
Carbohydrate Simple vs. Complex sugars Simple sugars: Monosaccharide: “One” “Sugar” We will focus on glucose: C6H1206 The basic/main source of organism energy “quick energy”
Simple Sugars:Carbohydrates Disaccharide “Two” “Sugars” Examples: Table sugar: sugars= Glucose + Fructose Maltose= Glucose + Glucose Lactose= Glucose + Galactose
Complex Sugars: Polysaccharide “many sugars” Complex Sugar. Functions: Cells use them for energy and cell wall structure cellulose. They allow organisms to gradually use energy since it is stored in large chains.
Complex Sugars: Polysaccharide Starch : has thousands of glucoses (sugars) bonded together ………Thousands
Complex Sugars: Polysaccharides Cellulose: Makes up the walls of plant cells. Also made from glucose. Ruminants (cattle, sheep) can digest both cellulose and glucose. Humans can digest starch, but not cellulose WHY??????????
Polysaccharides Glycogen: Animals store carbohydrates (glucose) in the form of glycogen; similar in form to starch. Why???? This is why… This is our reserve energy Stored in liver and muscles We do not want to lose our carbs all at once!!
Proteins Made of Amino Acid Chains Amino Acids are bonded through a peptide bond
Each ball is An Amino Acid. Bonded by Peptide Bonds There are 20 Amino Acids
There are 20 different occurring amino acids
Protein Function Building material: muscle, bones, hair, fingernails Enzymes: Control rate of chemical reaction in the cells and body (catalyst) Immunity: make up antibodies Other specific functions such as Hemoglobin: carry O2 in red blood cells Regulate cell processes
Examples of Protein Structures The shape of protein is important to its function. Enzyme: Quaternary Structure
Lipids (Fats) A common lipid is made of 3 fatty acids chains connected to a glycerol
Lipids (Fats) Glycerol: a type of alcohol. The back bone of Fats. 3 Fatty acid chains: Long chains of C & H Saturated=as many C & H bonded as possible, single bond, (Solid at Room Temp.) Unsaturated= C and C bonds, must have at least one double bond (usually Liquid at Room Temp.) Generally good for you: fish oil, avocado, olive oil, red meat, HDL vs LDL
Lipids (Fats) Functions The main energy storing molecule because of the high # of carbon to carbon bonds. Why are bonds important? …because they Store chemical energy Lipids store more energy than any other biomolecule 9 Cal/gram = lipids 4 Cal/gram = carbohydrates and proteins
Lipids (Fats) Functions Insulate Main molecule of the Cell membrane Make up some hormones (testosterone)
?Questions? What type of bond connects Amino Acids? What are lipids composed of? What are three of the macromolecules of carbohydrates? What is the sugar subunit? What are the four types of elements that make up biomolecules?
Enzymes All enzymes are proteins but… Enzymes act as a catalyst by speeding up chemical reactions. All enzymes are catalysts but…
Enzymes Enzymes – ase Specific and depend on temperature and pH to work efficiently…otherwise they will denature.
Enzymes are protein catalysts that carry out the chemical reactions of metabolism. All chemical reactions require activation energy to break chemical bonds and begin the reaction. Enzymes lower the barriers that normally prevent chemical reactions from occurring by decreasing the required activation energy.