Data assimilation in Austria

Slides:



Advertisements
Similar presentations
ALARO-0 at ZAMG Experiences, verification, identified problems, ….
Advertisements

Zentralanstalt für Meteorologie und Geodynamik Calibrating the ECMWF EPS 2m Temperature and 10m Wind Speed for Austrian Stations Sabine Radanovics.
Zentralanstalt für Meteorologie und Geodynamik LACE DA working days 14-16, June 2011 Budapest X. Yan.
Indirect Use of NWP in Nowcasting
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
The High Wind Event of 7 March 2004 in the Piedmont of the Western Carolinas Harry Gerapetritis National Weather Service Greer, SC.
Demands and expectations at SMHI on the European Reanalysis for observations and climate Per Und én Tomas Landelius SMHI.
EURO4M 4th GA, Norrköping, April 2013 Overview of the new MESCAN precipitation analysis system C. Soci, E. Bazile, J-F. Mahfouf with contributions.
Title ALADIN METEOROLOGICAL DATA June 24-25, 2002, at IIASA, Laxenburg, Austria Available domain: Long: 11°W – 17°E Lat: 35°N – 57°N Period: 01/01/1999.
ALARO-0 experience in Hungary1 Mihály Szűcs Hungarian Meteorological Service ALARO-1 Working Days, June 2012, Ljubljana, Slovenia.
LACE DA working days September 2010, Ljubljana Local data assimilation system in Slovenia.
2mT daytime problem in CANARI surface assimilation M. Derkova.
LACE Data Assimilation Working Days June 2011, Budapest HARMONIE DA suite at KNMI Jan Barkmeijer With contributions from: Cisco de Bruijn, Siebren.
Data assimilation experiments for AMMA, using radiosonde observations and satellite observations over land F. Rabier, C. Faccani, N. Fourrié, F. Karbou,
The CONCORDIASI Workshop, Toulouse, March 2010 Impact study of AMSU-A/B data over land and sea-ice in the Météo-France global assimilation system.
NWP and AMMA case studies J.-P. Lafore, F. Beucher, F. Pouponneau, F. Rabier, C. Faccani, N. Fourrié, F. Karbou, P. Moll, M. Nuret, J-L Redelsperger, J.
Use and evaluation of medium-range forecast at the Use and evaluation of medium-range forecast at the Hungarian Meteorological Service. Ferenc Wantuch.
ECMWF Training Course 2005 slide 1 Forecast sensitivity to Observation Carla Cardinali.
High Resolution MOS Forecasts Based on a Low Resolution Model Dipl.-Met. Klaus Knüpffer, 28.Sep 2009 OUTLINE 1. MOS reduces 50% of the error variance of.
Chapter 13 – Weather Analysis and Forecasting
Break Time Remaining 10:00.
Page 1 NAE 4DVAR Oct 2006 © Crown copyright 2006 Mark Naylor Data Assimilation, NWP NAE 4D-Var – Testing and Issues EWGLAM/SRNWP meeting Zurich 9 th -12.
Gergely Bölöni, Roger Randriamampinanina, Regina Szoták, Gabriella Csima: Assimilation of ATOVS and AMDAR data in the ALADIN 3d-var system 1 _____________________________________________________________________________________.
15. Oktober Oktober Oktober 2012.
The development of GRAPES_RAFS and its applications Xu Zhifang Hao Min Zhu Lijuan Gong Jiangdong Chen Dehui National Meteorological Center, CMA Wan Qilin.
Advances in Land Surface Modelling and Data Assimilation at EC Focus upon improved analysis of snow cover CanSISE Workshop : 30.
Development of Data Assimilation Systems for Short-Term Numerical Weather Prediction at JMA Tadashi Fujita (NPD JMA) Y. Honda, Y. Ikuta, J. Fukuda, Y.
: 3 00.
5 minutes.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Deutscher Wetterdienst Zentrale Vorhersage DWD Workshop "Use and Verification of LEPS products", Geneve, May, Verification of LEPS products.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Clock will move after 1 minute
COSMO General Meeting Zürich, Sept Stefan Klink, Klaus Stephan and Christoph Schraff and Daniel.
Select a time to count down from the clock above
Towards Rapid Update Cycling for Short Range NWP Forecasts in the HIRLAM Community WMO/WWRP Workshop on Use of NWP for Nowcasting UCAR Center Green Campus,
The use of the NWCSAF High Resolution Wind product in the mesoscale AROME model at the Hungarian Meteorological Service Máté Mile, Mária Putsay and Márta.
LAMEPS Development and Plan of ALADIN-LACE Yong Wang et al. Speaker: Harald Seidl ZAMG, Austria Thanks: Météo France, LACE, NCEP.
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
Advances in the use of observations in the ALADIN/HU 3D-Var system Roger RANDRIAMAMPIANINA, Regina SZOTÁK and Gabriella Csima Hungarian Meteorological.
Meso-γ 3D-Var Assimilation of Surface measurements : Impact on short-range high-resolution simulations Geneviève Jaubert, Ludovic Auger, Nathalie Colombon,
The ALADIN-France Limited-Area Model Joël Stein Marc Tardy Hervé Bénichou.
HIRLAM 3/4D-Var developments Nils Gustafsson, SMHI.
26 th EWGLAM & 11 th SRNWP meetings, Oslo, Norway, 4 th - 7 th October 2004 Stjepan Ivatek-Šahdan RC LACE Data Manager Croatian Meteorological and Hydrological.
Use of radar data in ALADIN Marián Jurašek Slovak Hydrometeorological Institute.
Assimilation of Satellite Radiances into LM with 1D-Var and Nudging Reinhold, Christoph, Francesca, Blazej, Piotr, Iulia, Michael, Vadim DWD, ARPA-SIM,
AROME_WMED for HyMeX M.Nuret, N. Fourrié, E. Bresson, C. Jany, P. Brousseau, A. Doerenbecher and colleagues Météo-France / CNRM-GAME.
DATA ASSIMILATION M. Derkova, M. Bellus, M. Nestiak.
25 th EWGLAM/10 th SRNWP Lisbon, Portugal 6-9 October 2003 Use of satellite data at Météo-France Élisabeth Gérard Météo-France/CNRM/GMAP/OBS, Toulouse,
AROME/ALADIN discussions, Prague Data assimilation and variational algorithms in ALADIN 11-12th April, Data assimilation and variational algorithms.
NCAR April 1 st 2003 Mesoscale and Microscale Meteorology Data Assimilation in AMPS Dale Barker S. Rizvi, and M. Duda MMM Division, NCAR
Page 1 Developments in regional DA Oct 2007 © Crown copyright 2007 Mark Naylor, Bruce Macpherson, Richard Renshaw, Gareth Dow Data Assimilation and Ensembles,
MSG cloud mask initialisation in hydrostatic and non-hydrostatic NWP models Sibbo van der Veen KNMI De Bilt, The Netherlands EMS conference, September.
© Crown copyright Met Office Report to 22 nd NAEDEX Meeting Roger Saunders + many others, Met Office, Exeter.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
ALADIN 3DVAR at the Hungarian Meteorological Service 1 _____________________________________________________________________________________ 27th EWGLAM.
OSEs with HIRLAM and HARMONIE for EUCOS Nils Gustafsson, SMHI Sigurdur Thorsteinsson, IMO John de Vries, KNMI Roger Randriamampianina, met.no.
EWGLAM/SRNWP, Athens, 28 Sept – 1 Oct 2009 Developments in data assimilation for LACE Gergely Bölöni, Edit Adamcsek, László Szabó, Alena Trojáková, Xin.
Indirect impact of ozone assimilation using Gridpoint Statistical Interpolation (GSI) data assimilation system for regional applications Kathryn Newman1,2,
Soil analysis scheme for AROME within SURFEX
Recent data assimilation activities at the Hungarian Meteorological Service Gergely Bölöni, Edit Adamcsek, Alena Trojáková, László Szabó ALADIN WS /
ASCAT soil moisture data assimilation with SURFEX
Progress in development of HARMONIE 3D-Var and 4D-Var Contributions from Magnus Lindskog, Roger Randriamampianina, Ulf Andrae, Ole Vignes, Carlos Geijo,
4D-Var HARMONIE Developments
The second AROME-WMED reanalysis of SOP1
Impact of Traditional and Non-traditional Observation Sources using the Grid-point Statistical Interpolation Data Assimilation System for Regional Applications.
Studies in HARMONIE 3D-Var with 3 hourly rapid update cycling
NWP activities in Austria in 2006/2007 Y. Wang
Presentation transcript:

Data assimilation in Austria Florian Meier, Xin Yan, Stefan Schneider, Christoph Wittmann, Yong Wang

Assimilation system: ALADIN-Austria parallel run Coupling with ARPEGE forecasts (3h coupling interval) Forecast: 00 UTC +72h, 6h-assimilation cycle Domain: 300x270 grid points; 9.6 km horizontal resolution; 60 layers cy35t1: 001,927,fullpos cy36t1: BATOR, CANARI, SCREENING, MINIMIZATION, BLEND, BLENDSUR Calculations at ZAMG; NEC SX8 Controlled by kornshell scripts (5 masterscripts + templates) no SMS

Activities since last meeting in Ljubljana Change from CANARI || 3D-Var to CANARI->3D-Var Additional assimilation step at 03 UTC abandoned Blacklists from MF Assimilation cy32t1->cy36t1 (since January 2011) Satellite data change from obsoul to bufr / grib Change from static BC to VarBC More satellite data: SEVIRI, HIRS, NOAA19, METOP, ASCAT SYNOP from ZAMG+OPLACE (->more stations in HU + CH) ALARO5 with CANARI+ECMWF lagged coupling operational since March 2011 -> linear truncation more levels in low atmosphere Case studies: 29.5.2010 (Hungary) ; 28.2-1.3.2011 (stratus) Vertical background correlation function in CANARI Some OSE, tests on GPS, new B-Matrix, snow analysis

Verification: upper air fields (Präsentation) 27.03.2017 Folie 4 RMSE 500hPa wind temperature 850hPa temperature wind Zeitraum 11/2010

Verification: screenlevel fields and precipitation (Präsentation) 27.03.2017 Folie 5 precipitation RMSE MAE -- BIAS RH2m RMSE + MAE S A L S A L T2m without assimilation with assimilation BIAS Zeitraum 11/2010

Bias 850 hPa 20101005-20101025 old new temperature wind Old vs new cycle Bias 850 hPa 20101005-20101025 old new temperature wind relative humidity geopotential

Bias 500 hPa 20101005-20101025 temperature old wind new Old vs new cycle Bias 500 hPa 20101005-20101025 temperature old wind new relative humidity geopotential

RMSE 850 hPa 20101005-20101025 old temperature wind new Old vs new cycle RMSE 850 hPa 20101005-20101025 old temperature wind new relative humidity geopotential

RMSE 500 hPa 20101005-20101025 old temperature wind new Old vs new cycle RMSE 500 hPa 20101005-20101025 old temperature wind new relative humidity geopotential

T2m OLD vs new cycle stations 0-500m 20101101-20101130 00 UTC-runs MSLP OPER ASSIM new OPER ASSIM old T2m OPER ASSIM old OPER ASSIM new

Surface stations used in 3D-Var RH2m T2m

1631 1626 obsoul__merge.pl Ts-increments 2298 2298 = Double observations from OPLACE/local data base in CANARI (visit of M. Bellus (SK) in Vienna) filtered before BATOR 1631 1626 Ts-increments OPLACE->ZAMG ZAMG->OPLACE obsoul__merge.pl not filtered beforeBATOR 2298 2298 =

Modification of CANARI background error statistics CANARI increments are quite smooth especially in Alpine areas and even in ALARO5 -> reduction of background horizontal correlation length and introduction of vertical correlation function as already existing for snow analysis also for T2m, RH2m in „catrma“ und „cacova“ (LCORRF=.TRUE.) d=45km, Pc=0.05 set in namelist reference d=60km Ts standard CANARI Ts CANARI +vert. corr.

500-1000m T2m RH2m MSLP vert. corr. reference T2m RH2m 1000-1500m Modification of CANARI background error statistics positive effect on T2m especially for stations between 500-1500m, mslp slightly worse, other parameters more or less neutral 500-1000m T2m RH2m MSLP vert. corr. reference T2m RH2m 1000-1500m

Assimilation of ASCAT 10m winds (25km resolution) 12,5km ASCAT wind data lead to crash in bator_decodbufr ascat_20110610_082332_metopa_24076_ear_o_250_ovw.l2_bufr.gz

Snow analysis in CANARI Some tests only with surface station data from ZAMG database Modification of namelist and routines hop.F90, bator_ecritures_mod.F90 RCSNSY=200. RCSNSY=2.5 REF_A_SN=50km, REF_S_SN=5. , REF_AP_SN=0.02

Snow analysis in CANARI problems: no 0 observations, no obs. over Switzerand and France, quality control -> station 16227 RCSNSY=2.5 RCSNSY=200.

„Impact of several observation systems“ (Präsentation) 27.03.2017 Folie 18 Impact of new satellite data NOAA19+Metop on temperature RMSE AMDAR METOP/NOAA19 TEMP AMSU-A GEOWIND AMSU-B SEVIRI HIRS GPS SYNOP Method following Storto und Randriamampianina 2010

CANARI || 3D-Var vs CANARI->3D-Var BIAS RMSE geopotential T

CANARI || 3D-Var vs CANARI->3D-Var BIAS RMSE Rel. humi. wind

Outlook: Less resources at ZAMG for data assimilation in the future Parallel run will probably be switched off soon Focus on AROME with some assimilation part (RUC+FGAT ASCAT soil moisture kalman filter) Maybe some time for testing new observations (Metop IASI, AIRS, SSMIS) CANARI vertical correlation in ALARO5?

Proposals of last meeting Done: New aladin cycle CANARI ->3D-Var instaed of || 03 UTC step abandoned 5km linear truncation and orography in ALARO5 (no 3D-Var yet) some experiments with CANARI background correlation Not done: Tuning of so, sb Channel selection of satellite data 5km-B-matrix IDFI

Case studies

Case study: squall line 29.5.2010

Case study: squall line 29.5.2010 +03h (Präsentation) 27.03.2017 Folie 26 CANARI only without assimilation CANARI+3D-var

Case study: squall line 29.5.2010 +06h (Präsentation) (Präsentation) 27.03.2017 27.03.2017 Folie 27 Folie 27 CANARI only without assimilation CANARI+3D-var

Case study: squall line 29.5.2010 +09h (Präsentation) (Präsentation) 27.03.2017 27.03.2017 Folie 28 Folie 28 CANARI only without assimilation CANARI+3D-var

Case study: squall line 29.5.2010 +12h (Präsentation) (Präsentation) 27.03.2017 27.03.2017 Folie 29 Folie 29 CANARI only without assimilation CANARI+3D-var

Case study: Low stratus at 1st March 2011 00 UTC

ALARO5 +24h ALADIN-Austria +24h ALADIN assim +24h Case study: Low stratus at 1st March 2011 00 UTC (Präsentation) 27.03.2017 Folie 31 ALARO5 +24h ALADIN-Austria +24h ALADIN assim +24h

Case study: Low stratus at 1st March 2011 00 UTC no inversion ALADIN-AUSTRIA ALADIN+3DVAR+CANARI ALARO5+CANARI

Heavy rain +Thunderstorm over Vienna 8th June 2011 82mm/12h in Vienna centre 44mm/30min 11.30-12.00 UTC

ALADIN_AUSTRIA ALARO5 ALADIN-ASSIM Heavy rain +Thunderstorm over Vienna 8th June 2011 ALADIN_AUSTRIA ALARO5 ALADIN-ASSIM

Case study squall line on 23rd July 2009 radar 20 UTC

Case study squall line on 23rd July 2009 INCA-analysis OPER 23rd July 00 UTC run: precipitation 18 UTC - 21 UTC 3DVAR+GPS CANARI+3DVAR SURFEX+ASCAT Niederschlag 18.00-21.00 UTC

Increments ALARO5-CANARI: surface temperature standard CANARI without vertical correlation of background error for T2m, RH2m modified CANARI version with vertical correlation of background error for T2m, RH2m