Zentralanstalt für Meteorologie und Geodynamik LACE DA working days 14-16, June 2011 Budapest X. Yan
Zentralanstalt für Meteorologie und Geodynamik outline GPS data assimilation results DA experiment results comparison using old and new Bmatrix (Präsentation) Folie 2
Zentralanstalt für Meteorologie und Geodynamik EGVAP GPS network used for 2009 experiment (Präsentation) Folie 3
Zentralanstalt für Meteorologie und Geodynamik ANDF LINZ ATPU SALZ SHLA LIEZ WEYE AMST ALST ZIDF TRAI LEOP MIST BADE NEUS MATT OBER GUES LEIB GRAZ LEOB MURZ SHEI WOBGTREI KLAF GUMM KOET SILL OCHS SONN ROET SAAL KIBG JENB SEEF LANDMATR 2010: GPS stations used / Austria 40
Zentralanstalt für Meteorologie und Geodynamik (Präsentation) Folie 5 Scores for 2009 and 2010 Scores on the upper air parameters for 2010 are generally better than Improvements on temperature of 700, 850 and 925hPa temperature were found. Humidity improved on 700hPa. Neutral impact on geopotential and wind. Precipitation score SAL showed a slightly improvement for the whole period. Slight better location score is found in general.
Zentralanstalt für Meteorologie und Geodynamik (Präsentation) Folie 6 Conclusion on case study GPS brings very local but in most cases positive impact (Main feature still decided by first guess) In general, we observed that model tends to underestimate the amount of precipitation especially for the heavy precipitating events. The GPS assimilation experiments proved to have a positive impact on the intensity of precipitation in most of the case studies emphasizing the potential hidden in GPS data especially for extreme events forecast.
Zentralanstalt für Meteorologie und Geodynamik (Präsentation) Folie 7 Scores Humidity GPS vs. Control 500hPa700hPa 850hPa 925hPa
Zentralanstalt für Meteorologie und Geodynamik upper air temperature bias GPS vs. Control 925hPa850hPa 500hPa 700hPa
Zentralanstalt für Meteorologie und Geodynamik (Präsentation) Folie 9 Case study 2009 : h EGVAPREF EGVAP + TU OBS
Zentralanstalt für Meteorologie und Geodynamik Case study 2009 : h EGVAPREF EGVAP + TU OBS
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 vs. 32t (Präsentation) Folie 11 Ensemble method Bmatrix 35t1: Autumn Bmatrix 32t1: Winter-Spring
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 vs. 32t1 35t132t1
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 vs. 32t1 35t132t1
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 vs. 32t1 35t1 32t1
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) : surface score for / 0-500m 2m temperature 2m relative humidity
Zentralanstalt für Meteorologie und Geodynamik 2m temperature Bmatrix 35t1 (red) vs. 32t1 (blue) : surface score for / m 2m relative humidity
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) surface score for / m 2m relative humidity 2m temperature
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) surface score for / mountain stations 2m relative humidity 2m temperature
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) : geopotential score for hPa 700hPa 850hPa 500hPa
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) : relative humidity score for hPa 700hPa 850hPa 500hPa
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) temperature score for hPa 700hPa 850hPa 500hPa
Zentralanstalt für Meteorologie und Geodynamik Bmatrix 35t1 (red) vs. 32t1 (blue) : wind score for hPa 700hPa 850hPa 500hPa
Zentralanstalt für Meteorologie und Geodynamik conclusion The adding of GPS data and using of a new B matrix is not degrading the results, instead a slightly positive impact (Präsentation) Folie 23