1 Arrays  Arrays are objects that help us organize large amounts of information  Chapter 6 focuses on: array declaration and use passing arrays and array.

Slides:



Advertisements
Similar presentations
CSCI 1100/ , 6.2, 6.4 April 12, 15, 17.
Advertisements

Lecture 6 b Last time: array declaration and instantiationarray declaration and instantiation array referencearray reference bounds checkingbounds checking.
Chapter 6: Arrays Java Software Solutions for AP* Computer Science
Arrays.
1 (c) elsaddik CSI 1102 Introduction to Software Design Prof. Dr.-Ing. Abdulmotaleb El Saddik University of Ottawa (SITE.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Java Software Solutions Foundations of Program Design Sixth Edition by Lewis.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Java Software Solutions Foundations of Program Design Sixth Edition by Lewis.
Arrays Clark Savage Turner, J.D., Ph.D. Copyright © 2000 by C Scheftic. All rights reserved. These notes do rely heavily.
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Arrays Arrays are objects that help us organize large amounts of information Chapter.
1 Arrays b An array is an ordered list of values An array of size N is indexed from zero to N-1 scores.
Wecksten, Mattias Arrays Based on templates from Lewis & Loftus.
1 Arrays  Arrays are objects that help us organize large amounts of information  Chapter 8 focuses on: array declaration and use passing arrays and array.
Aalborg Media Lab 28-Jun-15 Software Design Lecture 8 “Arrays”
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Arrays Arrays are objects that help us organize large amounts of information Chapter.
Arrays in Java Selim Aksoy Bilkent University Department of Computer Engineering
Chapter 6: Arrays Java Software Solutions Third Edition
© 2011 Pearson Education, publishing as Addison-Wesley 1 Arrays  Arrays are objects that help us organize large amounts of information  Chapter 6 focuses.
Arrays Chapter 7 Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013.
Do Now Take out ch6 test answers – be ready to hand it in Pick a leader in each group of up to 3 students; Leader will retrieve a whiteboard, marker, and.
1 7 Arrays. 2 Arrays are objects that help us organize large amounts of information Chapter 7 focuses on: –array declaration and use –bounds checking.
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved11-2 Arrays Arrays are objects that help us organize large amounts of information.
7. Arrays. Topics Declaring and Using Arrays Some Array Algorithms Arrays of Objects Variable Length Parameter Lists Two-Dimensional Arrays The ArrayList.
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Arrays Arrays are objects that help us organize large amounts of information Chapter.
1 Dr. Seuss again: "Too Many Daves"  Did I ever tell you that Mrs. McCave Had twenty-three sons, and she named them all Dave?  Well, she did. And that.
Chapter 7 Arrays 5 TH EDITION Lewis & Loftus java Software Solutions Foundations of Program Design © 2007 Pearson Addison-Wesley. All rights reserved.
Chapter 6: Arrays Presentation slides for Java Software Solutions for AP* Computer Science by John Lewis, William Loftus, and Cara Cocking Java Software.
Chapter 7 Arrays. Chapter Scope Array declaration and use Bounds checking Arrays as objects Arrays of objects Command-line arguments Variable-length parameter.
COS 312 DAY 11 Tony Gauvin. Ch 1 -2 Agenda Questions? One Capstone proposal over due – First Progress report due March 5 (next class) Assignment 3 Not.
Chapter 7 Arrays. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Arrays Arrays are objects that help us organize large amounts of information Chapter.
CSC 1051 – Data Structures and Algorithms I Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
© 2011 Pearson Education, publishing as Addison-Wesley Chapter 6: Arrays Presentation slides for Java Software Solutions for AP* Computer Science 3rd Edition.
8-1 Chapter 8: Arrays Arrays are objects that help us organize large amounts of information Today we will focuses on: –array declaration and use –bounds.
Chapter 7 Arrays: Part 2. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Outline Declaring and Using Arrays Arrays of Objects Variable Length Parameter.
Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Java Software Solutions Foundations of Program Design Sixth Edition by Lewis.
Chapter 7 Arrays 5 TH EDITION Lewis & Loftus java Software Solutions Foundations of Program Design © 2007 Pearson Addison-Wesley. All rights reserved.
OBJECTS FOR ORGANIZING DATA -- As our programs get more sophisticated, we need assistance organizing large amounts of data. : array declaration and use.
Chapter 7 Arrays: Part 2. © 2004 Pearson Addison-Wesley. All rights reserved2/27 Outline Declaring and Using Arrays Arrays of Objects Variable Length.
Programming in Java (COP 2250) Lecture Chengyong Yang Fall, 2005.
1 Arrays An array is an ordered list of values An array of size N is indexed from zero to N-1 scores.
CSC 1051 – Data Structures and Algorithms I Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
Chapter 7 Arrays: Part 1 of 2. © 2004 Pearson Addison-Wesley. All rights reserved7-2 Arrays Arrays are objects that help us organize large amounts of.
Dr. Sahar Shabanah Lecture 3: Arrays. Data Structures Data structures are organized collections of information and a set of operations used to manage.
CSC 1051 – Data Structures and Algorithms I Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
1 Sorting b Sorting is the process of arranging a list of items into a particular order b There must be some value on which the order is based b There.
Java Software Solutions Lewis and Loftus Chapter 6 1 Copyright 1997 by John Lewis and William Loftus. All rights reserved. Objects for Organizing Data.
Chapter 7 Arrays 5 TH EDITION Lewis & Loftus java Software Solutions Foundations of Program Design © 2007 Pearson Addison-Wesley. All rights reserved.
1 Objects for Organizing Data -- Introduction zAs our programs get more sophisticated, we need assistance organizing large amounts of data zChapter 6 focuses.
CSC 1051 – Data Structures and Algorithms I Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
COS 312 DAY 12 Tony Gauvin. Ch 1 -2 Agenda Questions? First Progress report due Assignment corrected 1 MIA – 2 A’s, 2 B’s, 1 D, 1 F and 1 MIA – Code\pig.
1 Arrays Chapter 8. Objectives You will be able to Use arrays in your Java programs to hold a large number of data items of the same type. Initialize.
© 2004 Pearson Addison-Wesley. All rights reserved5-1 The if-else Statement An else clause can be added to an if statement to make an if-else statement.
Chapter 7 Arrays…. 7-2 Arrays An array is an ordered list of values An array of size N is indexed from.
© 2011 Pearson Education, publishing as Addison-Wesley Chapter 6: Arrays Presentation slides for Java Software Solutions for AP* Computer Science 3rd Edition.
Lecture 5 array declaration and instantiation array reference
Arrays of Objects October 9, 2006 ComS 207: Programming I (in Java)
ARRAYS (Extra slides) Arrays are objects that help us organize large amounts of information.
Chapter VII: Arrays.
Chapter 6: Arrays Java Software Solutions
COS 312 DAY 14 Tony Gauvin.
Chapter 7: Arrays.
Sorts.
Arrays We often want to organize objects or primitive data in a way that makes them easy to access and change. An array is simple but powerful way to.
Outline Late Binding Polymorphism via Inheritance
Arrays of Objects October 8, 2007 ComS 207: Programming I (in Java)
Outline Declaring and Using Arrays Arrays of Objects
Arrays.
Presentation transcript:

1 Arrays  Arrays are objects that help us organize large amounts of information  Chapter 6 focuses on: array declaration and use passing arrays and array elements as parameters arrays of objects sorting elements in an array multidimensional arrays the ArrayList class

2 Arrays  An array is an ordered list of values An array of size N is indexed from zero to N-1 scores The entire array has a single name Each value has a numeric index This array holds 10 values that are indexed from 0 to 9

3 Arrays  A particular value in an array is referenced using the array name followed by the index in brackets  For example, the expression scores[2] refers to the value 94 (the 3rd value in the array)  That expression represents a place to store a single integer and can be used wherever an integer variable can be used

4 Arrays  For example, an array element can be assigned a value, printed, or used in a calculation : scores[2] = 89; scores[first] = scores[first] + 2; mean = (scores[0] + scores[1])/2; System.out.println ("Top = " + scores[5]);

5 Arrays  The values held in an array are called array elements  An array stores multiple values of the same type (the element type)  The element type can be a primitive type or an object reference  Therefore, we can create an array of integers, or an array of characters, or an array of String objects, etc.  In Java, the array itself is an object  Therefore the name of the array is a object reference variable, and the array itself must be instantiated

6 Declaring Arrays  The scores array could be declared as follows: int[] scores = new int[10];  The type of the variable scores is int[] (an array of integers)  Note that the type of the array does not specify its size, but each object of that type has a specific size  The reference variable scores is set to a new array object that can hold 10 integers  See BasicArray.java (page 322) BasicArray.java

7 BasicArray.java public class BasicArray { final static int LIMIT = 15; final static int MULTIPLE = 10; public static void main (String[] args) { int[] list = new int[LIMIT]; for (int index = 0; index < LIMIT; index++) list[index] = index * MULTIPLE; list[5] = 999; // change one array value for (int index = 0; index < LIMIT; index++) System.out.print (list[index] + " "); System.out.println (); }}

8 Declaring Arrays  Some examples of array declarations: float[] prices = new float[500]; boolean[] flags; flags = new boolean[20]; char[] codes = new char[1750];

9 Bounds Checking  Once an array is created, it has a fixed size  An index used in an array reference must specify a valid element  That is, the index value must be in bounds (0 to N-1)  The Java interpreter throws an ArrayIndexOutOfBoundsException if an array index is out of bounds  This is called automatic bounds checking

10 Bounds Checking  For example, if the array codes can hold 100 values, it can be indexed using only the numbers 0 to 99  If count has the value 100, then the following reference will cause an exception to be thrown: System.out.println (codes[count]);  It’s common to introduce off-by-one errors when using arrays for (int index=0; index <= 100; index++) codes[index] = index*50 + epsilon; problem

11 Bounds Checking  Each array object has a public constant called length that stores the size of the array  It is referenced using the array name: scores.length  Note that length holds the number of elements, not the largest index  See ReverseOrder.java (page 324) ReverseOrder.java  See LetterCount.java (page 326) LetterCount.java

12 ReverseOrder.java import cs1.Keyboard; public class ReverseOrder { public static void main (String[] args) { double[] numbers = new double[10]; System.out.println ("The size of the array: " + numbers.length); for (int index = 0; index < numbers.length; index++) { System.out.print ("Enter number " + (index+1) + ": "); numbers[index] = Keyboard.readDouble(); } System.out.println ("The numbers in reverse order:"); for (int index = numbers.length-1; index >= 0; index--) System.out.print (numbers[index] + " "); System.out.println (); }}

13 LetterCount.java import cs1.Keyboard; public class LetterCount{ public static void main (String[] args) { final int NUMCHARS = 26; int[] upper = new int[NUMCHARS]; int[] lower = new int[NUMCHARS]; char current; // the current character being processed int other = 0; // counter for non-alphabetics System.out.println ("Enter a sentence:"); String line = Keyboard.readString(); for (int ch = 0; ch < line.length(); ch++) { current = line.charAt(ch); if (current >= 'A' && current <= 'Z') upper[current-'A']++; else if (current >= 'a' && current <= 'z') lower[current-'a']++; else other++; } // Print the results System.out.println (); for (int letter=0; letter < upper.length; letter++) { System.out.print ( (char) (letter + 'A') ); System.out.print (": " + upper[letter]); System.out.print ("\t\t" + (char) (letter + 'a') ); System.out.println (": " + lower[letter]); } System.out.println (); System.out.println ("Non-alphabetic characters: " + other); }}

14 Alternate Array Syntax  The brackets of the array type can be associated with the element type or with the name of the array  Therefore the following declarations are equivalent: float[] prices; float prices[];  The first format generally is more readable

15 Initializer Lists  An initializer list can be used to instantiate and initialize an array in one step  The values are delimited by braces and separated by commas  Examples: int[] units = {147, 323, 89, 933, 540, 269, 97, 114, 298, 476}; char[] letterGrades = {'A', 'B', 'C', 'D', ’F'};

16 Initializer Lists  Note that when an initializer list is used: the new operator is not used no size value is specified  The size of the array is determined by the number of items in the initializer list  An initializer list can only be used only in the array declaration  See Primes.java (page 330)Primes.java

17 Primes.java Author: Lewis/Loftus public class Primes {public static void main (String[] args) { int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19}; System.out.println ("Array length: " + primeNums.length); System.out.println ("The first few prime numbers are:"); for (int scan = 0; scan < primeNums.length; scan++) System.out.print (primeNums[scan] + " "); System.out.println (); }}

18 Arrays as Parameters  An entire array can be passed as a parameter to a method  Like any other object, the reference to the array is passed, making the formal and actual parameters aliases of each other  Changing an array element within the method changes the original  An array element can be passed to a method as well, and follows the parameter passing rules of that element's type

19 Arrays of Objects  The elements of an array can be object references  The following declaration reserves space to store 25 references to String objects String[] words = new String[25];  It does NOT create the String objects themselves  Each object stored in an array must be instantiated separately  See GradeRange.java (page 332) GradeRange.java

20 GradeRange.java Author: Lewis/Loftus public class GradeRange {public static void main (String[] args) {String[] grades = {"A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D+", "D", "D-", "F"}; int[] cutoff = {95, 90, 87, 83, 80, 77, 73, 70, 67, 63, 60, 0}; for (int level = 0; level < cutoff.length; level++) System.out.println (grades[level] + "\t" + cutoff[level]); }}

21 Command-Line Arguments  The signature of the main method indicates that it takes an array of String objects as a parameter  These values come from command-line arguments that are provided when the interpreter is invoked  For example, the following invocation of the interpreter passes an array of three String objects into main : > java StateEval pennsylvania texas arizona  These strings are stored at indexes 0-2 of the parameter  See NameTag.java (page 334) NameTag.java

22 NameTag.java Author: Lewis/Loftus public class NameTag { public static void main (String[] args) { System.out.println (); System.out.println (" " + args[0]); System.out.println ("My name is " + args[1]); System.out.println (); } }

23 Arrays of Objects  Objects can have arrays as instance variables  Many useful structures can be created with arrays and objects  The software designer must determine carefully an organization of data and objects that makes sense for the situation  See Tunes.java (page 335) Tunes.java  See CDCollection.java (page 337) CDCollection.java  See CD.java (page 340) CD.java

24 Tunes.java Author: Lewis/Loftus public class Tunes {public static void main (String[] args) { CDCollection music = new CDCollection (); music.addCD ("Storm Front", "Billy Joel", 14.95, 10); music.addCD ("Come On Over", "Shania Twain", 14.95, 16); music.addCD ("Soundtrack", "Les Miserables", 17.95, 33); music.addCD ("Graceland", "Paul Simon", 13.90, 11); System.out.println (music); music.addCD ("Double Live", "Garth Brooks", 19.99, 26); music.addCD ("Greatest Hits", "Jimmy Buffet", 15.95, 13); System.out.println (music); }}

25 CDCollection.java1 import java.text.NumberFormat; public class CDCollection { private CD[] collection; private int count; private double totalCost; public CDCollection () { collection = new CD[100]; count = 0; totalCost = 0.0; } public void addCD (String title, String artist, double cost, int tracks) { if (count == collection.length) increaseSize(); collection[count] = new CD (title, artist, cost, tracks); totalCost += cost; count++; }

26 CDCollection.java 2 public String toString ( ) { NumberFormat fmt = NumberFormat.getCurrencyInstance(); String report = "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&\n"; report += "My CD Collection\n\n"; report += "Number of CDs: " + count + "\n"; report += "Total cost: " + fmt.format(totalCost) + "\n"; report += "Average cost: " + fmt.format(totalCost/count); report += "\n\nCD List:\n\n"; for (int cd = 0; cd < count; cd++) report += collection[cd].toString() + "\n"; return report; } private void increaseSize ( ) { CD[] temp = new CD[collection.length * 2]; for (int cd = 0; cd < collection.length; cd++) temp[cd] = collection[cd]; collection = temp; }}

27 CD.java Author: Lewis/Loftus import java.text.NumberFormat; public class CD { private String title, artist; private double cost; private int tracks; public CD (String name, String singer, double price, int numTracks) { title = name; artist = singer; cost = price; tracks = numTracks; } public String toString() { NumberFormat fmt = NumberFormat.getCurrencyInstance(); String description; description = fmt.format(cost) + "\t" + tracks + "\t"; description += title + "\t" + artist; return description; }}

28 Sorting  Sorting is the process of arranging a list of items in a particular order  The sorting process is based on specific value(s) sorting a list of test scores in ascending numeric order sorting a list of people alphabetically by last name  There are many algorithms for sorting a list of items  These algorithms vary in efficiency  We will examine two specific algorithms: Selection Sort Insertion Sort

29 Selection Sort  The approach of Selection Sort: select a value and put it in its final place into the list repeat for all other values  In more detail: find the smallest value in the list switch it with the value in the first position find the next smallest value in the list switch it with the value in the second position repeat until all values are in their proper places

30 Selection Sort  An example: original: smallest is 1: smallest is 2: smallest is 3: smallest is 6:  See SortGrades.java (page 342) SortGrades.java  See Sorts.java (page 343) -- the selectionSort method Sorts.java

31 SortGrades.java Author: Lewis/Loftus public class SortGrades { public static void main (String[] args) { int[] grades = {89, 94, 69, 80, 97, 85, 73, 91, 77, 85, 93}; Sorts.selectionSort (grades); for (int index = 0; index < grades.length; index++) System.out.print (grades[index] + " "); }}

32 Sorts.java1 public class Sorts { public static void selectionSort (int[] numbers) { int min, temp; for (int index = 0; index < numbers.length-1; index++) { min = index; for (int scan = index+1; scan < numbers.length; scan++) if (numbers[scan] < numbers[min]) min = scan; temp = numbers[min]; numbers[min] = numbers[index]; numbers[index] = temp; }}

33 Swapping  Swapping is the process of exchanging two values  Swapping requires three assignment statements temp = first; first = second; second = temp;

34 Insertion Sort  The approach of Insertion Sort: pick any item and insert it into its proper place in a sorted sublist repeat until all items have been inserted  In more detail: consider the first item to be a sorted sublist (of one item) insert the second item into the sorted sublist, shifting the first item as needed to make room to insert the new addition insert the third item into the sorted sublist (of two items), shifting items as necessary repeat until all values are inserted into their proper positions

35 Insertion Sort  An example: original: insert 9: insert 6: insert 1: insert 2:  See Sorts.java (page 343) -- the insertionSort method Sorts.java

36 insertionSort.java public static void insertionSort (int[] numbers) { for (int index = 1; index < numbers.length; index++) { int key = numbers[index]; int position = index; while (position > 0 && numbers[position-1] > key) { numbers[position] = numbers[position-1]; position--; } numbers[position] = key; } }

37 Sorting Objects  Integers have an inherent order, but the ordering criteria of a collection of objects must be defined  Recall that a Java interface can be used as a type name and guarantees that a particular class implements particular methods  We can use the Comparable interface and the compareTo method to develop a generic sort for a set of objects  See SortPhoneList.java (page 347) SortPhoneList.java  See Contact.java (page 348) Contact.java  See Sorts.java (page 343) – the second insertionSort method Sorts.java

38 SortPhoneList.java public class SortPhoneList { public static void main (String[] args) { Contact[] friends = new Contact[7]; friends[0] = new Contact ("John", "Smith", " "); friends[1] = new Contact ("Sarah", "Barnes", " "); friends[2] = new Contact ("Mark", "Riley", " "); friends[3] = new Contact ("Laura", "Getz", " "); friends[4] = new Contact ("Larry", "Smith", " "); friends[5] = new Contact ("Frank", "Phelps", " "); friends[6] = new Contact ("Marsha", "Grant", " "); Sorts.insertionSort(friends); for (int index = 0; index < friends.length; index++) System.out.println (friends[index]); }}

39 Contact.java Author: Lewis/Loftus public class Contact implements Comparable { private String firstName, lastName, phone; public Contact (String first, String last, String telephone) { firstName = first; lastName = last; phone = telephone;} public String toString ( ) { return lastName + ", " + firstName + "\t" + phone;} public int compareTo (Object other) { int result; if (lastName.equals(((Contact)other).lastName)) result = firstName.compareTo(((Contact)other).firstName); else result = lastName.compareTo(((Contact)other).lastName); return result; }}

40 public static void insertionSort (Comparable[] objects) {for (int index = 1; index < objects.length; index++) { Comparable key = objects[index]; int position = index; while (position > 0 && objects[position- 1].compareTo(key) > 0) { objects[position] = objects[position-1]; position--; } objects[position] = key; }}}

41 Comparing Sorts  Both Selection and Insertion sorts are similar in efficiency  They both have outer loops that scan all elements, and inner loops that compare the value of the outer loop with almost all values in the list  Approximately n 2 number of comparisons are made to sort a list of size n  We therefore say that these sorts are of order n 2  Other sorts are more efficient: order n log 2 n

42 Two-Dimensional Arrays  A one-dimensional array stores a list of elements  A two-dimensional array can be thought of as a table of elements, with rows and columns one dimension two dimensions

43 Two-Dimensional Arrays  To be precise, a two-dimensional array in Java is an array of arrays  A two-dimensional array is declared by specifying the size of each dimension separately: int[][] scores = new int[12][50];  A two-dimensional array element is referenced using two index values value = scores[3][6]  The array stored in one row or column can be specified using one index

44 Two-Dimensional Arrays ExpressionTypeDescription scoresint[][] 2D array of integers, or array of integer arrays scores[5]int[] array of integers scores[5][12]int integer  See TwoDArray.java (page 351) TwoDArray.java  See SodaSurvey.java (page 352) SodaSurvey.java

45 TwoDArray.java Author: Lewis/Loftus public class TwoDArray{ public static void main (String[] args) { int[][] table = new int[5][10]; for (int row=0; row < table.length; row++) for (int col=0; col < table[row].length; col++) table[row][col] = row * 10 + col; for (int row=0; row < table.length; row++) { for (int col=0; col < table[row].length; col++) System.out.print (table[row][col] + "\t"); System.out.println(); } }}

46 SodaSurvey.java import java.text.DecimalFormat; public class SodaSurvey { public static void main (String[] args) { int[][] scores = { {3, 4, 5, 2, 1, 4, 3, 2, 4, 4}, {2, 4, 3, 4, 3, 3, 2, 1, 2, 2}, {3, 5, 4, 5, 5, 3, 2, 5, 5, 5}, {1, 1, 1, 3, 1, 2, 1, 3, 2, 4} }; final int SODAS = scores.length; final int PEOPLE = scores[0].length; int[] sodaSum = new int[SODAS]; int[] personSum = new int[PEOPLE]; for (int soda=0; soda < SODAS; soda++) for (int person=0; person < PEOPLE; person++) { sodaSum[soda] += scores[soda][person]; personSum[person] += scores[soda][person]; } DecimalFormat fmt = new DecimalFormat ("0.#"); System.out.println ("Averages:\n"); for (int soda=0; soda < SODAS; soda++) System.out.println ("Soda #" + (soda+1) + ": " + fmt.format ((float)sodaSum[soda]/PEOPLE)); System.out.println (); for (int person =0; person < PEOPLE; person++) System.out.println ("Person #" + (person+1) + ": " + fmt.format ((float)personSum[person]/SODAS)); }}

47 Multidimensional Arrays  An array can have many dimensions  If it has more than one dimension, it is called a multidimensional array  Each dimension subdivides the previous one into the specified number of elements  Each array dimension has its own length constant  Because each dimension is an array of array references, the arrays within one dimension can be of different lengths these are sometimes called ragged arrays

48 The ArrayList Class  The ArrayList class is part of the java.util package  Like an array, it can store a list of values and reference them with an index  Unlike an array, an ArrayList object grows and shrinks as needed  Items can be inserted or removed with a single method invocation  It stores references to the Object class, which allows it to store any kind of object  See Beatles.java (page 357) Beatles.java

49 Beatles.java Author: Lewis/Loftus import java.util.ArrayList; public class Beatles { public static void main (String[] args) { ArrayList band = new ArrayList(); band.add ("Paul"); band.add ("Pete"); band.add ("John"); band.add ("George"); System.out.println (band); int location = band.indexOf ("Pete"); band.remove (location); System.out.println (band); System.out.println ("At index 1: " + band.get(1)); band.add (2, "Ringo"); System.out.println (band); System.out.println ("Size of the band: " + band.size()); }}

50 ArrayList Efficiency  The ArrayList class is implemented using an array  The code of the ArrayList class automatically expands the array's capacity to accommodate additional elements  The array is manipulated so that indexes remain continuous as elements are added or removed  If elements are added to and removed from the end of the list, this processing is fairly efficient  If elements are inserted and removed from the middle of the list, the elements are constantly being shifted around

51 Summary  Chapter 6 has focused on: array declaration and use passing arrays and array elements as parameters arrays of objects sorting elements in an array multidimensional arrays the ArrayList class