Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.

Slides:



Advertisements
Similar presentations
Geminis Future AO Program A Decade of AO Evolution at Gemini Recent AO Program Highlights Doug Simons Gemini Observatory.
Advertisements

Sarah Kendrew Leiden Instrumentation Group.  One of eight potential instruments for the European ELT, the largest planned optical/IR telescope for the.
Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
Instrumentation at the Subaru Telescope - next 10 years - Naruhisa Takato and Tomonori Usuda (Subaru Telescope)
GLAO instrument specifications and sensitivities
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
NIR INSTRUMENT FOR GLAO Takashi Hattori, Iwata Ikuru (Subaru Telescope)
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Thermal Infrared Observation using Adaptive Secondary Mirror (ASM) Hiroshi TERADA (Subaru Telescope)  Ground-based Thermal IR w/AO  Subaru Thermal IR.
AO188/LGS status AO188 development group(Subaru Telescope, NAOJ) (JST)
Laser Guide Stars by Roberto Ragazzoni INAF – Astronomical Observatory of Padova (Italy)
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
Widening the Scope of Adaptive Optics Matthew Britton.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
1 NGAO Science Instrument Reuse Part 1: NIRC2 NGAO IWG December 12, 2006.
Tibor Agócs Purpose of the talk  Wide-field spectroscopy/imaging is the driver  MOS  IFU  NB/WB imager  Current FOV is 40 arcmin – it’s.
WISH upon a first galaxy….. WISH Wide-field Imaging Surveyor for High-Redshift WISH Working Group M31 Phot: R.Gendler.
Masahiro Konishi (IoA, UTokyo), SWIMS Team S W I M S.
WISH upon a first galaxy….. WISH Wide-field Imaging Surveyor for High-Redshift WISH Working Group M31 Phot: R.Gendler.
JWST calibration requirements Harald Kuntschner. JWST - an overview NIRCam –0.6-5 microns –FoV: 2.16x4.4 arcmin (0.0317” for short band and ” for.
Simulating Observations of z~2 galaxies with GLAO Yosuke Minowa, Ikuru Iwata (Subaru telescope) 2013/6/13-14 Subaru GLAO Science Hokkaido Univ.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
GLAO simulations at ESO European Southern Observatory
AO4ELT - Paris Giant Magellan Telescope Project Science Drivers & AO Requirements Patrick McCarthy - GMT Director Phil Hinz & Michael Hart - GMT.
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
Infrared Wavefront Sensor (IR-WFS) Yutaka Hayano Internal Meeting on Future Instrument Projects at Subaru April 26, 2010.
The Observations of LAMOST Jianrong Shi NAOC 1/
IRCS+AO188 decommission? Yosuke Minowa. IRCS AO assisted NIR imager and spectrograph Wavelength coverage: – 1-5 micron (Aladdin III 1024x1024 InSb array)
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics Mt. Hamilton Visitor’s Night July 28, 2001.
GMTIFS – An AO-Corrected Integral-Field Spectrograph and Imager for GMT Peter McGregor The Australian National University 1 IFUs in the Era of JWST - October.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
Science large collection of science cases for seeing improved imaging and spectroscopy also demand on diffraction limited imaging and spectroscopy (Italians)
Early scientific goals for the MMT’s multi-laser-guided adaptive optics Michael Lloyd-Hart, Thomas Stalcup, Christoph Baranec, N. Mark Milton, Matt Rademacher,
February 2013 Ground Layer Adaptive Optics (GLAO) Experiment on Mauna Kea Doug Toomey.
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
AO188/LGS Status and Schedule 1 Yutaka Hayano January 31, 2008.
Status report of AO188+LGS (+future AO) Yutaka Hayano (Subaru Telescope, NAOJ) S. Oya, M. Hattori, Y. Saito, Y. Minowa, M. Ito, H. Terada, T.S. Pyo, H.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Introduction of RAVEN Internal meeting on future instrument projects at Subaru Shin Oya ( Subaru Telescope/NAOJ) ‏ Hilo.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Subaru GLAO Simulation
Incoming instruments. New instruments IMACS MOEMultiobject echellette LDSS upgradeMultiobject optical spectroscopy CorMASSLow-res visiting NIR spectrograph.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Normal-Incidence Design Option for SolO/EUS Roger J. Thomas NASA/GSFC 2004 November 04.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Page 1 Adaptive Optics in the VLT and ELT era François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Basics of AO.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Page 1 Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016.
Pyramid sensors for AO and co-phasing
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope. Ultra-wide-field Laser Tomographic Imager and MOS with AO for Transcendent Exploration by SUBARU telescope.

Adaptive Telescope 4 laser guide star Adaptive Scondary Mirror Wavefront Sensor NIR instrument 4 laser guide star

ground-layer turbulence Atmospheric turbulence Wavefront sensors Feedback correction to deformable secondary mirror Turbulence at ground layer Estimation of ground-layer turbulence Guide stars

GLAO - Specifications under Consideration Guide stars 4 LGSs + 3 NGSs DM Secondary mirror ~1000 actuators, modification of VLT ASM. HO-WFS > 8x8 SH visible, EM-CCD(TBD) TT(F)-WFS 2x2 SH or quad visible Laser 20 W CW TOPTICA (589nm) (option: Rayleigh) LGS constellation 15’ in diameter Laser Launch ~25cm dia. (TBD) side launch

NIR Instrument - Specifications under Consideration Wavelength 0.8-2.5μm Plate Scale 0.06-0.1”/pix FoV approx.13‘x13’ Wider with Split FoVs? Filters Broad+Narrow R?, I,z,J,H,K, NB MOS Multi Slit Mask Alternatively Multi-IFU λ Dispersion 2000(TBD) Under Investigation

Comparison: Imaging Subaru MOIRCS Subaru GLAO TMT IRIS HST WFC3/IR JWST NIRCam Telescope Aperture 8.2m 30m 2.4m 6.5m Wavelength Coverage 0.9-2.5μm 0.84-2.4μm 0.9-1.7μm 0.9-2.3μm / 2.4-5.0μm Spatial Resolution 0.117”/pix 0.4”@2μm ~0.1”/pix 0.2”@2μm 4 mas 10mas@1μm 0.13”/pix FWHM~ 0.25” 32 mas / 64 mas Field of View 28 □’ ~180 □’ 0.075 □’ 4.65 □’ 9.7 □’

Comparison: Spectroscopy Subaru MOIRCS Subaru GLAO TMT IRIS HST WFC3/IR JWST NIRSpec Wavelength Coverage 0.9-2.5μm 0.84-2.4μm 0.9-1.7μm 0.6-5μm Spatial Resolution 0.117”/pix 0.4”@2μm ~0.1”/pix 0.2”@2μm 4 - 50 mas 0.13”/pix FWHM~ 0.25” 0.2”x0.45” Field of View ~25 □’ ~120 □’ 0.2-10 □” 4.65 □’ 12.24 □’(MSA) 3”x3”(IFS) Functions Single-Slit MOS IFS Multi-IFS? Slitless Slits Microshutters Spectral Resolution 600-3000 -2000? 4000-10000 TBW 100, 1000, 2700

Perfoamance simulation FWHM Add to match seeing statistics at Subaru. R J H K Seeing 0.65” 0.51” 0.49” 0.44” GLAO 0.41” 0.27” 0.23” 0.20” TMT site test at 13N Ensquared Energy (0.24”x0.24”) R J H K Seeing 9% 12% 15% 17% GLAO 16% 29% 36% 41% Turbulence profile Zenith angle dependency 0° 15° 30° 45° 60° Seeing 0.44” 0.49” 0.52” 0.60” 0.76” GLAO 0.20” 0.28” 0.31” 0.38” 0.55” GS asterism S. Oya

Sky coverage D. Simons, Gemini technical notes TN-PS-G0030, (1995). S. Oya Sky coverage ★:LGS ●: TTFGS Searching area for TTFGS Dash circle line: 7.5’ radius 18mag: 34.1670 13.1761 6.7217 4.2019 3.0303 2.3584 1.9951 1.7573 1.7562 19mag: 65.2393 21.7403 10.6814 6.6279 4.7669 3.7023 3.1285 2.7500 2.7500 17': 101.1209 33.6974 16.5562 10.2732 7.3887 5.7385 4.8492 4.2625 4.2625 In .conf: 800Hz & effectively half for EM-CCD, i.e. actually x8 LGS(32x32SA): 10mag ⇒ 33.597 x 8 = 268.776 TTF(4SA): 18mag ⇒ => 5.397 x 8 = 43.1760 D. Simons, Gemini technical notes TN-PS-G0030, (1995). r(in, out) = r_circ TTFGS(R-band) b: 10~20 deg 30~50 deg 60~90 deg (7' ,8') = 1.6' < 18 mag > 6.7 > 3.0 > 1.8 < 19 mag > 10.7 > 4.8 > 2.8 1 mag fainter (7', 8.5') = 2.0' < 18mag > 34.7 > 7.4 > 4.3 1‘ dia. wider 9

Conceptual study Performance simulation update Deformable secondary mirror Laser system Telescope interface and modification Optical design of NIR instrument

Preliminary model for ASM Mirror Dia: 1265mm Actuators: 924 Spacing: ~ 35 mm Center obscuration: 350mm

Interface to existing IR M2

Vignetting by telescope structures M3 Unit Cassegrain Unit M1 cell cover

Cassegrain Unit φ16 arcmin Remove ① ADC Remove Remove Modify

M3 unit φ16 arcmin

Wide-Field NIR Imager+Multi-Object Spectrograph (A case without FoV splitting) Optical Design by Dr. Yamamuro (Optcraft) focusing lenses collimating lenses field flattener input window FoV 12.6’

Project preparation Project organization International collaborators PI (Nobuo Arimoto, Director of Subaru Telescope.) Project management (Hayano) Project AO scientist (Oya, Lai) Project scientist (Kodama, Iwata, Minowa) International collaborators Gemini, HIA, ASIAA etc.

Project organization Primary Investigator N. Arimoto Project Management Y. Hayano T. Kodama O. Lai I.Iwata S. Oya Y. Minowa

Telescope Modification Schedule 2012 13 14 15 16 17 18 19 2020 Review Review Concept Design Review Prelim Design Detail Design Fabrication FL Telescope Modification Integration and Test Science Operation AO188/LGS HSC PFS TMT

Feasible schedule (plan) Upgrade to Adaptive Telescope Adaptive Secondary Mirror. Grant-in-Aid, Specially Promoted Research, (Tokubetu-shuishin), 2014 or 2015, 5 years, Wavefront sensor and lasers. Grant-in-Aid, New research field, (Shin-gakujutu), 2014 or 2015, 5 years. Collaboration with biology researcher. GLAO + Nu MOIRCS NIR wide field instrument. Imager, MOS or M-IFS. International collaboration or other Grant-in-Aid.

Cost Estimation Item Cost (USD) Adaptive Secondary Mirror 5-10M Laser System 4-8M Wavefront Sensor System ~3.5M Computers ~0.2M Telescope Modifications 15-20M Instruments 5-20M (Additional) Human Resources ~2M Total 35-60M