Surface Integral.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

ESSENTIAL CALCULUS CH11 Partial derivatives
VECTOR CALCULUS Stokes’ Theorem In this section, we will learn about: The Stokes’ Theorem and using it to evaluate integrals. VECTOR CALCULUS.
Vector Analysis Copyright © Cengage Learning. All rights reserved.
Chapter 13-Vector Calculus Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
EE3321 ELECTROMAGENTIC FIELD THEORY
Stokes Theorem. Recall Green’s Theorem for calculating line integrals Suppose C is a piecewise smooth closed curve that is the boundary of an open region.
Chapter 16 – Vector Calculus 16.7 Surface Integrals 1 Objectives:  Understand integration of different types of surfaces Dr. Erickson.
16 MULTIPLE INTEGRALS.
Section 16.7 Surface Integrals. Surface Integrals We now consider integrating functions over a surface S that lies above some plane region D.
MULTIPLE INTEGRALS MULTIPLE INTEGRALS 16.9 Change of Variables in Multiple Integrals In this section, we will learn about: The change of variables.
VECTOR CALCULUS The Divergence Theorem In this section, we will learn about: The Divergence Theorem for simple solid regions, and its applications.
Recall :The area of the parallelogram determined by two 3-vectors is the length of cross product of the two vectors. A parametrized surface defined by.
17 VECTOR CALCULUS.
Chapter 16 – Vector Calculus
Copyright © Cengage Learning. All rights reserved. 15 Multiple Integrals.
Multiple Integrals 12. Surface Area Surface Area In this section we apply double integrals to the problem of computing the area of a surface.
Copyright © Cengage Learning. All rights reserved. 16 Vector Calculus.
Mathematics for Business (Finance)
1 Chapter 2 Vector Calculus 1.Elementary 2.Vector Product 3.Differentiation of Vectors 4.Integration of Vectors 5.Del Operator or Nabla (Symbol  ) 6.Polar.
Chapter 13 Multiple Integrals by Zhian Liang.
Ch. 10 Vector Integral Calculus.
CHAPTER 13 Multiple Integrals Slide 2 © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 13.1DOUBLE INTEGRALS 13.2AREA,
DOUBLE INTEGRALS OVER GENERAL REGIONS
ME 2304: 3D Geometry & Vector Calculus Dr. Faraz Junejo Double Integrals.
Vector Analysis Copyright © Cengage Learning. All rights reserved.
Vector Analysis 15 Copyright © Cengage Learning. All rights reserved.
Section 17.5 Parameterized Surfaces
Vector Analysis Copyright © Cengage Learning. All rights reserved.
MA Day 60 – April 11, MA The material we will cover before test #4 is:
Teorema Stokes. STOKES’ VS. GREEN’S THEOREM Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem. – Green’s Theorem relates.
Vector Calculus.
Multiple Integration Copyright © Cengage Learning. All rights reserved.
SECTION 13.7 SURFACE INTEGRALS. P2P213.7 SURFACE INTEGRALS  The relationship between surface integrals and surface area is much the same as the relationship.
SECTION 13.8 STOKES ’ THEOREM. P2P213.8 STOKES ’ VS. GREEN ’ S THEOREM  Stokes ’ Theorem can be regarded as a higher- dimensional version of Green ’
Vector Calculus CHAPTER 9.10~9.17. Ch9.10~9.17_2 Contents  9.10 Double Integrals 9.10 Double Integrals  9.11 Double Integrals in Polar Coordinates 9.11.
Multiple Integration 14 Copyright © Cengage Learning. All rights reserved.
Multiple Integration Copyright © Cengage Learning. All rights reserved.
SECTION 12.8 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS.
Copyright © Cengage Learning. All rights reserved. 16 Vector Calculus.
SECTION 12.5 TRIPLE INTEGRALS.
Parametric Surfaces We can use parametric equations to describe a curve. Because a curve is one dimensional, we only need one parameter. If we want to.
Section 17.7 Surface Integrals. Suppose f is a function of three variables whose domain includes the surface S. We divide S into patches S ij with area.
Chapter 15 Curves, Surfaces and Volumes Alberto J
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 16 Vector Calculus.
17 VECTOR CALCULUS.
Copyright © Cengage Learning. All rights reserved.
Section 16.6 Surface Area. SURFACE AREA Let S be a surface defined by z = f (x, y) over a specified region D. Assume that f has continuous first partial.
Section 17.8 Stokes’ Theorem. DEFINITION The orientation of a surface S induces the positive orientation of the boundary curve C as shown in the diagram.
Copyright © Cengage Learning. All rights reserved. 15 Multiple Integrals.
15 Copyright © Cengage Learning. All rights reserved. Vector Analysis.
CHAPTER 9.10~9.17 Vector Calculus.
Line Integral II Line integral in an irrotational vector field Green’s theorem.
1 Line Integrals In this section we are now going to introduce a new kind of integral. However, before we do that it is important to note that you will.
Chapter 2 Vector Calculus
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
1 Divergence Theorem. 2 Understand and use the Divergence Theorem. Use the Divergence Theorem to calculate flux. Objectives Total flux change = (field.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Chapter 15 Multiple Integrals
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
UNIT I –DOUBLE INTEGRALS
Multiple Integrals.
17.5 Surface Integrals of Vector Fields
16.2: Line Integrals 16.3: The Fundamental Theorem for Line Integrals
Presentation transcript:

Surface Integral

Surface Integral Surface integral is a definite integral taken over a surface. It can be thought of as the double integral analog of the line integral. Given a surface, one may integrate over its scalar fields and vector fields. Surface integrals have applications in physics, particularly with the classical theory of electromagnetism. The definition of surface integral relies on splitting the surface into small surface elements.

Surface Integral In line integral, we learned how to integrate along a curve. We will now learn how to perform integration over a surface in R3, such as a sphere or a paraboloid. Similar to how we used a parametrization of a curve to define the line integral along the curve, we will use a parametrization of a surface to define a surface integral. We will use two variables, u and v, to parametrize a surface G in R3 : x = x(u,v), y = y(u,v), z = z(u,v), for (u,v) in some region R in R2

Surface Integral

Surface Integral In this case, the position vector of a point on the surface G is given by the vector-valued function

Surface Integral Now take a point (u,v) in R as, say, the lower left corner of one of the rectangular grid sections in R. Suppose that this rectangle has a small width and height of Δu and Δv, respectively. The corner points of that rectangle are (u,v), (u + Δu,v), (u+Δu,v+Δv) and (u,v+Δv). So the area of that rectangle is A = ΔuΔv. Then that rectangle gets mapped by the parametrization onto some section of the surface G which, for Δu and Δv small enough, will have a surface area (call it dS) that is very close to the area of the parallelogram which has adjacent sides r(u+ Δu,v) − r(u,v) (corresponding to the line segment from (u,v) to (u + Δu,v) in R) and r(u,v+ Δv) − r(u,v)

Surface Integral We have so the surface area element dσ is approximately

Surface Integral Definition Let G be a surface in R3 parametrized by x = x(u,v), y = y(u,v), z = z(u,v), for (u,v) in some region R in R2. Let r(u,v) = x(u,v)i + y(u,v)j + z(u,v)k be the position vector for any point on G, and let f(x, y, z) be a real-valued function defined on some subset of R3 that contains G. The surface integral of f(x, y, z) over G is In particular, the surface area S of G is

Surface Integral In special case of a surface G described as a graph z = h(x, y) of a function h defined on a region R in the xy-plane, we may use x and y (rather than u and v) as the parameters. The surface integral of f(x, y, z) over G is

Example 1 A torus T is a surface obtained by revolving a circle of radius a in the yz-plane around the z-axis, where the circle’s center is at a distance b from the z-axis (0 < a < b), as in figure. Find the surface area of T.

Solution the torus can be parametrized as:

Solution

Example 2 Evaluate where G is the part of the plane 2x – y + z = 3 above the triangle R with vertices (0, 0), (1, 0), and (1, 1)

Flux of a Vector Field Through a Surface Let G be such a smooth, two sided surface, and assume that it is submerged in a fluid with a continuous velocity field F(x,y,z). If ΔS is the area of a small piece of G, then F is almost constant there, and the volume ΔV of fluid crossing this piece in the direction of the unit normal n is ΔV  F . n ΔS We conclude that Flux of F across G =

Example 3 Find the upward flux of F = – y i + x j + 9 k across the part of the spherical surface G determined by

Flux of a Vector Field Through a Surface Theorem Let G be a smooth, two sided surface given by z = f(x,y), where (x, y) is in R, and let n denote the upward unit normal on G. If f has continuous first order partial derivatives and F = M i + N j + P k is a continuous vector field, then the flux of F across G is given by

Flux of a Vector Field Through a Surface Proof: If we write H(x, y, z) = z – f(x, y), we obtain It follows from definition of surface integral that

Exercise Evaluate the surface integral , where F(x, y, z) = yz i + xz j + xy k and G is the part of the plane x + y + z = 1 with x ≥ 0, y ≥ 0, and z ≥ 0, with the outward unit normal n pointing in the positive z direction (see figure)

Exercise 2. Calculate the flux of F = y i – x j + 2 k across G where G is the surface determined by 3.