y=aх² funksiya Х У 1 1 4 9 23 Х У 1 1 4 9 23 2 Х 1 1 4 9 3 Х У 1 1 4 9 23 2 Х 1 1 4 9 3 2 Х 1 1 4 9 3 У У У Grafiklar qaysi funksiyalarga tegishli:

Slides:



Advertisements
Similar presentations
Parabola Conic section.
Advertisements

What are you finding when you solve the quadratic formula? Where the graph crosses the x-axis Also known as: Zeros, Roots and X-intercepts.
Parabola and its Intercepts There are 2 intercepts to calculate : y – interceptwhere x = 0 substitute x = 0 into the equation and solve for y x – interceptswhere.
D.I.Mendeleyevning elementlar davriy sistemasi

For Friday, read Chapter 3, section 4. Nongraded Homework: Problems at the end of section 4, set I only; Power of Logic web tutor, 7.4, A, B, and C. Graded.
Activity 4.2 The Shot Put.
Microsoft Internet Explorer dasturida ishlash Toshkent Copyright © 2000 IATP Site design by Makhmud BotirovMakhmud Botirov EN GRANT IATP II&IS UZ.
Parabola Quiz 10 Revision questions. Write the equation for this parabola #1.
5.5 Quadratic Formula Warm-up (IN) Learning Objective: To use the quadratic formula to find real roots of quadratic equations and to use the roots to find.
Formula? Unit?.  Formula ?  Unit?  Formula?  Unit?
Unit 5 Review: Quadratics and Beyond Honors Analysis.
5.5 – The Quadratic formula Objectives: Use the quadratic formula to find real roots of quadratic equations. Use the roots of a quadratic equation to locate.
Learning Task/Big Idea: Students will learn how to find roots(x-intercepts) of a quadratic function and use the roots to graph the parabola.
Circles Ellipse Parabolas Hyperbolas
BİRLİK 0 ONLUK BİRLİK 0 ONLUK.
4.1 Graph Quadratic Functions in Standard Form
A b c d Main Integral Formulas for Computing Areas The Independent Variable is x The Independent Variable is y This is a dx integral This is a dy integral.
$200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400.
Homework Log Tues 11/17 Lesson 4 – 1 Learning Objective: To find difference quotients & to graph functions Hw: #401 Pg. 220 #1 – 8 all, 37 – 49 odd.
Circles Ellipse Parabolas Hyperbolas
GRAPHING PARABOLAS This presentation is modified from a HyperStudio presentation. Annette Williams MTSU.
Learning Task/Big Idea: Students will learn how to graph quadratic equations by binding the vertex and whether the parabola opens up or down.
Parabola  The set of all points that are equidistant from a given point (focus) and a given line (directrix).
Conics Conics Review. Graph It! Write the Equation?
Complex Numbers FactoringGraphing Quadratic Function Vocab 200.
Quadratic Relations Solving Quadratic Equations Day 4: Solve by Quadratic Formula Monday, January 25, 20161Day 4 - Solve by Quadratic Formula.
We will only look at Circles and Parabolas this year.
UNIT 1B LESSON 7 USING LIMITS TO FIND TANGENTS 1.
9-3 Graphing y = ax + bx + c 2 1a. y = x - 1 for -3
Big Idea: -Graph quadratic functions. -Demonstrate and explain the effect that changing a coefficient has on the graph. 5-2 Properties of Parabolas.
Objective: Students will be able to 1)Find the axis of symmetry 2)Find the vertex 3)Graph a quadratic formula using a table of values.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
O’ZBEKISTON RESPUBLIKASI OLIY VA O’RTA MAXSUS TA’LIM VAZIRLIGI TOSHKENT TIBBIYOT AKADEMIYASI TIBBIY VA BIOLOGIK KIMYO KAFEDRASI Fan:BIOLOGIK KIMYO 15-
Slope Formula. P1: ( -4, -5) P1: ( x 1, y 1 ) X 1 = -4, y 1 = -5 P2:( 4, 2) P2: (x 2, y 2 ) X 2 = 4, y 2 = 2 ( -4, -5) & ( 4,2)
Equation of a Parabola. Do Now  What is the distance formula?  How do you measure the distance from a point to a line?
Hozirgi vaqtda Yer sharini qoplagan o'simliklarning asosiy qismini yopiq urug'li o'simliklar tashkil qiladi. Yopiq urug'lilar o'simliklar olamining boshqa.
Graphing Quadratic Functions in Standard Form 5.1 Algebra II.
Bitli amallar. Ikkilik perebor. Rekursiv perebor.
Parabolas and Quadratic Functions. The x coordinate of the vertex can be found using as well. This is the easier method for finding the vertex of.
EXAMPLE FORMULA DEFINITION 1.
Solve.
Writing Equations of Parabolas
10.5 Parabolas Objective: Use and determine the standard and general forms of the equations of a parabolas. Graph parabolas.
5-2 Properties of Parabolas
9.3 Graphing Quadratic Functions
4.1 Distance Formula & Parabolas
3-mavzu: Jobs and people (Kasblar va odamlar)
Moving Companies in VA Moving Companies in Washington DC.
הנעה והטמעה של שימוש במערכות BI בקרב דרגי הניהול הארגוני
“Informatika va axborot texnologiyalari” fani
Y Label each of the components of the parabola A: ________________ B: ________________ C: ________________ C B B 1 2.
Writing Equations of Conics
Mavzu: Kompyuter tarmoqlarini adreslash. Reja: Mavzu: Kompyuter tarmoqlarini adreslash. Reja:
Keywords variance analysis – dispersion tahlil, correlation analysis – korrelyatsion tahlil, general dispersion – umumiy dispersiya, factorial dispersion.
Focus of a Parabola Section 2.3.
Pascal ABC da chizmalarning harakatlanishi
Graphics of functions and equations
Objectives Find the zeros of a quadratic function from its graph.
Т А Қ Д И М О Т И Жураева Холисхоннинг Наманган
4.4 Different Forms of Quadratic Expressions
Drawing Quadratic Graphs
Centers of Mass Section 7.6.
Drawing Graphs The parabola x Example y
Graphing Quadratic Equations
I will write a quadratic function in vertex form.
QUADRATIC FUNCTION PARABOLA.
Notes Over 5.8 Writing a Quadratic Function in Vertex Form
NAMANGAN MUHANDISLIK- TEXNOLOGIYA INSTITUTI YST FAKULTETI
9-3 Graphing y = ax + bx + c up 1a. y = x - 1 for -3<x<3
Presentation transcript:

y=aх² funksiya

Х У Х У Х Х У Х Х У У У Grafiklar qaysi funksiyalarga tegishli:

х у х У у=х² Simmetriya o`qi Grafik-parabola. Parabolaning uchi Parabola shoxchalari Shoxchalari yuqoriga qaragan nuqta (0;0) – parabolaning uchi у- o`qi simmetriya o`qidir у=х² funksiyaning grafigini chizamiz. (х) funksiya argumentini o`zimiz tanlaymiz, (у) funksiya qiymatlarini у=х² formula bilan hisoblaymiz.

y = 2x 2 х у х у Quyidagi funksiya grafigini yasaymiz: y = 0,5x 2 Quyidagi funksiya grafigini yasaymiz: х у 4,5 2 0,5 0 0,5 2 4,5

х у y = k x 2 0 < k <1 y = k x 2 k > 1 Parabolaning egriligi k ning qiymatiga bog`liq

7. Uzluksiz O`suvchi funksiya Funksiya pastdan chegaralangan, yuqoridan chegaralanmagan 1 х у 0 у=кх² (к>0) funksiyaning xossalari: Aniqlanish sohasi Qiymatlar sohasi 3. у=0, agar х= у>0, agar х 4. Kamayuvchi funksiya х х 5. Chegaralanganligi у kichik = у katta = YO`Q 0 7. Uzluksizligi 8

х у у=2х² funksiya grafigi yordamida argument (x) ga mos qiymatini aniqlang: 1) 0у=0 2) 1у=2 3) -1у=2 4) 2у=8 4) -1,5у=4,5

х у У katta =8 У kichik =0 kesmadagi eng katta va eng kichik qiymatini aniqlang у=2х² funksiyaning

х у У katta =8 У kichik =2 у=2х² funksiyaning 2 kesmadagi eng katta va eng kichik qiymatini aniqlang

х у ,5 У katta =4,5 У kichik =0 у=2х² funksiyaning 2 3 kesmadagi eng katta va eng kichik qiymatini aniqlang

у=-х² funksiyaning grafigini yasaymiz. (х) argumentning qiymatlarini o`zimiz tanlaymiz, (у) qiymatini у=-х² formula yordamida aniqlaymiz.

(0;0) nuqta – parabola uchi х у х У у=-х² Simmetriya o`qi Parabola uchi Grafik parabola. Parabola shoxchalari pastga qaragan У oqi – simmetriya o`qidir

х у y = -2x 2 х у Quyidagi funksiya grafigini yasaymiz: y = -0,5x 2 Quyidagi funksiya grafigini yasaymiz: х у -4, , ,5

7. Uzluksiz Funksiya kamayuvchi Funksiya yuqoridan chegaralangan, pastdan chegaralanmagan х у 0 у=кх² (к<0) ning xossalari: 1.Aniqlanish sohasi Qiymatlar sohasi 3. у=0, agar х= у<0, agar х 4. Funksiya o`suvchi х х 5. Chegaralanganligi у katta = у kichik = YO`Q 0 7. Uzluksizligi

х у У katta =0 У kichik =-2 kesmadagi eng katta va eng kichik qiymatlarini toping у=-0,5х² funksiyaning -2 -6

х у У katta =0 У kichik =-8 у=-0,5х² funksiyaning kesmadagi eng katta va eng kichik qiymatlarini toping

х у У katta =-2 У kichik =YO`Q у=-0,5х² funksiyaning oraliqdagi eng katta va eng kichik qiymatlarini toping

х у У katta =0 У kichik = у=-0,5х² funksiyaning oraliqdagi eng katta va eng kichik qiymatlarini toping

у = ах 2 + bх +с funksiya grafigini yasash. 1. Parabola shoxchalarining yo`nalishini aniqlash х – ixtiyoriy haqiqiy son. Yangi mavzu

у = ах 2 + bх +с funksiya grafigini yasash. 3. Parabola uchining koordinatalarini aniqlash. (т; п). 4. Simmetriya o`qini yasash. О (т;п) Yangi mavzu 5.

у = ах 2 + bх +с funksiya grafigini yasash 5. Grafikning О х o`qi bilan kesishish nuqtalarini, ya’ni funksiyaning nollarini aniqlash. (х 1 ;0)(х 2 ;0) Yangi mavzu 5.

6. Funksiyaning qiymatlar jadvalini to`ldirish, bunda simmetriya o`qi hisobga olinadi. х х1х1 х2х2 х3х3 х4х4 уу1у1 у2у2 у3у3 у4у4 Yangi mavzu 5. у = ах 2 + bх +с funksiya grafigini yasash

y = x 2 y = x y = x x012 y014 x012 y-22 x012 y459 y x P.U. (0;0) P.U. (0;-2)P.U. (0;4)

2) y = - x ) y = x ) y = - х mashq. Quyidagi funksiyalarning grafiklarini bitta koordinata tekisligida yasang: 1) y = x 2 - 3

y = x 2 y = (x-2) 2 y = (x+4) 2 x012 y014 x234 y014 x y014 y x P.U. (0;0) P.U. (2;0)P.U. (-4;0) -4

2-mashq. Quyidagi funksiyalarning grafiklarini bitta koordinata tekisligida yasang : 1) y = (x + 4) 2 2) y = - (x - 3) 2 3) y = (x – 2) 2 4) y = - (х + 1) 2

y x y = (x+1) ) y = (x+1) 2 2) y = (x+1) birlik chapga. 2 birlik pastga

y x y = (x-2) ) y = (x-2) 2 2) y = (x-2) birlik o`ngga 3 birlik yuqoriga

3-mashq. Quyidagi funksiyalarning grafiklarini bitta koordinata tekisligida yasang : 1) y = x ) y = - (x + 2) ) y = (x + 3) ) y = - (х – 3) ) y = (х – 4) 2 - 8