Human Systems Nancy Dow Jill Hansen Tammy Stundon Gulf Coast State CollegePanhandle Area Educational Consortium 5230 West Highway West Boulevard Panama City, Florida 32401Chipley, Florida Biology Partnership (A Teacher Quality Grant )
Pre-test Breaks Explanation of Q & A boards Asking questions Our approach to the standards & to this lesson
Florida Next Generation Sunshine State Standards SC.912.L Identify the major parts of the brain on diagrams or models. (LOW) Low Complexity 10%-20% Low complexity benchmarks rely heavily on the recall and recognition of previously learned concepts and principles. These benchmarks typically specify what the student is to do, which is often to carry out a procedure that can be preformed mechanically. It is not left to the student to come up with an original method or solution. Skills related to low complexity benchmarks include the following. Identify a common example or recognize a concept Retrieve information from a chart, table, diagram, or graph Recognize a standard scientific representation of a simple phenomenon Calculate or complete a familiar single-step procedure or equation using a reference sheet
Item Specs BENCHMARK SC.912.L Reporting Category Organisms, Populations, and Ecosystems Standard Standard 14 Organization and Development of Living Organisms Benchmark SC.912.L Identify the major parts of the brain on diagrams or models. Benchmark Clarification Students will identify the major parts of the brain on diagrams. Content Limits Items are limited to the cerebrum, cerebellum, pons, medulla oblongata, brain stem, frontal lobe, parietal lobe, occipital lobe, and temporal lobe. Items will not assess the function of the major parts of the brain. Stimulus Attribute Items will include diagrams of the brain. Response Attributes None specified Prior Knowledge Items may require the student to apply knowledge described in the NGSSS from lower grades. This benchmark requires prerequisite knowledge from SC.6.L.14.5.
Bell ringer Pinky and the Brain!
Brain stem includes mid brain, pons, and the medulla oblongata
Frontal Lobe Occipital Lobe Parietal Lobe Temporal Lobe Id parts of the brain
Id parts of the Brain Handout (copies of label the brain) to label with web quest Sheep Brain Swimmer Cap activity
Follow up Q/A Board Problem solving issues in class Additional activities –Sheep Brain DissectionSheep Brain Dissection –Perception and the Brain- optical illusionsPerception and the Brain- optical illusions
Florida Next Generation Sunshine State Standards SC.912.L Describe the factors affecting blood flow through the cardiovascular system. (MODERATE) Moderate Complexity 60%-80% Benchmarks in the moderate complexity category involve more flexible thinking and choice among alternatives. These benchmarks require a student response that goes beyond the habitual, is not specified, and ordinarily has more than a single step or thought process. The student is expected to decide what to do – using informal methods of reasoning and problem solving strategies – and to bring together skills and knowledge from various domains. Skills related to moderate complexity benchmarks include the following. Apply or infer relationships among facts, terms, properties, or variables Describe examples and non examples of scientific processes or concepts Predict or determine the logical next step or outcome Compare or contrast structures or functions of different organisms or systems Choose the appropriate formula or equation to solve a problem and then solve it Apply and use concepts from a standard scientific model or theory
Item Specs BENCHMARK SC.912.L Reporting CategoryOrganisms, Populations, and Ecosystems Standard Standard 14 Organization and Development of Living Organisms Benchmark SC.912.L Describe the factors affecting blood flow through the cardiovascular system. Benchmark Clarification Students will identify factors that affect blood flow and/or describe how these factors affect blood flow through the cardiovascular system. Content Limits Items may address factors such as blood pressure, blood volume, resistance, disease (atherosclerosis), and exercise. Compare the blood vessels – tissues, thickness, blood flow rates, resistance Stimulus Attributes None specified Response Attributes None specified Prior Knowledge Items may require the student to apply knowledge described in the NGSSS from lower grades. This benchmark requires prerequisite knowledge from SC.6.L.14.5.
Cardiovascular Flow The Heart Blood flow: oArtery & Vein composition oHeart – flow of blood oBlood pressure vs. osmotic pressure oSkeletal muscle contraction
ARTERY VEIN CAPILLARIES arteriole endothelium connective tissue smooth muscle venule valve
Arteries, veins, and capillaries transport blood to all parts of the body. Arteries carry blood away from the heart. –blood under great pressure –thicker, more muscular walls Veins carry blood back to the heart –blood under less pressure –thinner walls, larger diameter –valves prevent backflow Capillaries move blood between veins, arteries, and cells. –One layer, one cell thick
Blood pressure is a measure of the force of blood pushing against artery walls. –systolic pressure: left ventricle contracts –diastolic pressure: left ventricle relaxes High blood pressure can precede a heart attack or stroke.
How the heart pumps What makes the blood move through the heart? * cardiac muscle * difference in thickness of wall * valves Blood flow animation Besides the composition of the blood vessels, the heart, and blood pressure, what else can affect the heart rate? External factors?
Atherosclerosis a condition in which an artery wall thickens as a result of the accumulation of fatty materials such as cholesterol. This is linked to high fat diets and lack of exercise.
Lab - Effect of exercise on Heart Rate
Lab - What drugs affect the heart rate of Daphnia?
Follow up Q/A board Problem solving issues in class Additional activities –Interactive Tutorial on Internal Heart AnatomyInteractive Tutorial on Internal Heart Anatomy –Heart Dissection on You TubeHeart Dissection on You Tube –How to Measure BP and What It All MeansHow to Measure BP and What It All Means
Florida Next Generation Sunshine State Standards SC.912.L Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and antibiotics. (MODERATE) HE.912.C.1.8 Analyze strategies for prevention, detection and treatment of communicable and chronic diseases.
BENCHMARK SC.912.L Reporting Category Organisms, Populations, and Ecosystems Standard Standard 14 Organization and Development of Living Organisms Benchmark SC.912.L Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and antibiotics. (Also assesses SC.912.L.14.6, HE.912.C.1.4, and HE.912.C.1.8.) Also AssessesSC.912.L.14.6 Explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspectives of both individual and public health. HE.912.C.1.4 Analyze how heredity and family history can impact personal health. HE.912.C.1.8 Analyze strategies for prevention, detection, and treatment of communicable and chronic diseases. Benchmark Clarifications Students will identify and/or explain the basic functions of the human immune system, including specific and nonspecific immune responses. Students will describe how the human immune system responds to vaccines and/or antibiotics. Students will explain the significance of genetic factors, environmental factors, and pathogenic agents to health from the perspective of both individual and public health. Content Limits Items assessing the significance of genetic factors, environmental factors, and pathogenic agents to health are limited to a conceptual understanding. Stimulus Attribute Scenarios are limited to those commonly included in a biology course. Response Attributes None specified Prior Knowledge Items may require the student to apply scientific knowledge described in the NGSSS from lower grades. This benchmark requires prerequisite knowledge of SC.6.L.14.6, SC.6.E.7.8, SC.8.N.4.1, and SC.8.N.4.2.
Immune Bell ringer Osmosis Jones Vaccine Clip Immune System is a body system that fights infection & prevents illnesses Immunity: –the ability of the body to defend itself against infectious agents, foreign cells, and abnormal body cells (ex. cancer)
Line of Defense 1 st Line: barriers –Broad, external defense “Walls and Moats” skin & mucus membranes 2 nd Line: Nonspecific patrol –Broad, internal defense “Patrolling soldiers” phagocytes eating WBC’s 3 rd Line: Immune System –Specific, acquired immunity Elite trained units lymphocyte WBCs & antibodies –B & T cells
1st line: Physical Barriers Lining of trachea: ciliated cells & mucus secreting cells Non-specific defense External barriers skin –physically blocks pathogens mucus membranes- traps particles in nose and throat excretions sweat tears mucus stomach acids saliva (“lick your wounds”)
Inflammatory reaction –Four outward signs (redness, heat, swelling, & pain) –Histamine is released which cause capillaries to become enlarged –and more permeable –(causes redness, –swelling, pain) White Blood cells Non-specific (macrophage) 2 nd Line of Defense Non-specific
3 rd Line of Defense - Specific Defense Pathogens, cancer cells, or foreign cells have protein markers on surface (antigens) that activate the immune system because foreign to body Types of White Blood Cells -all made in the bone marrow -All called in after the non-specific WBCs –B lymphocyte cells (mature in bone marrow) produce antibodies that combine with antigens and target particular pathogens Produce memory B cells –T lymphocyte cells (mature in thymus gland) directly destroy infected cells produce cytotoxic T cells, helper T cells, and memory T cells
Immunity Active –Body creates an immune response after being exposed to a pathogen or a vaccine –Memory cells are produced so this immunity lasts (sometimes even a lifetime) Passive –Antibodies in breast milk or shots of antibodies provide a temporary immune response
Different pathogen cause common infectious diseases
Antibiotics kill pathogens inside the body antibiotics cause pathogens to burst target on specific bacterium or fungus not effective against viruses antibiotic resistance issues Antibiotics have killed the bottom cell by weakening its cell wall and causing it to burst. (colored TEM; magnification 55,000X
Antibiotic resistance can cause medicines to become ineffective. –Some bacteria in a population have genes that make them immune to antibiotics. –These bacteria spread the gene, making the antibiotics useless. A bacterium carries genes for antibiotic resistance on a plasmid. A copy of the plasmid is transferred through conjugation. Resistance is quickly spread through many bacteria.
Vaccines artificially produce acquired immunity. Vaccines also control pathogens and disease. –given to prevent illness –contain the antigen of a weakened pathogen
Vaccination provides acquired immunity. –stimulates a specific immune response –allows immune system to respond quickly to infection –causes memory cells to be produced –has such a fast response, a person will not get sick A memory B cell is stimulated when the real pathogen binds to it. 2 The B cell quickly activates and makes antibodies that fight the pathogens before you get sick. 3 Antigens in a vaccine trigger an immune response, and memory B cells are made. 1 memory B cells
Allergies Our body releases histamine which makes vessels leaky Histamine causes the mucus membranes of the nose and eyes to release fluid as a defense against pathogens –This produces cold-like symptoms With anaphylatic shock, the capillaries become so permeable that blood pressure drops
Immunity from Disease Activity We’ve got a problem! Then…… HIV lab Glow germs
Follow up Problem solving issues in class Additional activities: –Malaria interactive gameMalaria interactive game –Id agents of disease research activity –Antibodies Virtual Lab /Antibodies Virtual Lab /
Human reproductive system fetal development SC.912.L Describe the basic anatomy and physiology of the human reproductive system. Describe the process of human development from fertilization to birth and major changes that occur in each trimester of pregnancy. (MODERATE)
BENCHMARK SC.912.L Reporting Category Organisms, Populations, and Ecosystems Standard Standard 16 Heredity and Reproduction Benchmark SC.912.L Describe the basic anatomy and physiology of the human reproductive system. Describe the process of human development from fertilization to birth and major changes that occur in each trimester of pregnancy. Benchmark Clarifications Students will identify and/or describe the basic anatomy and physiology of the human reproductive system. Students will describe the process of human development from the zygotic stage to the end of the third trimester and birth. Content Limits Items referring to the male human reproductive system are limited to the seminal vesicle, prostate gland, vas deferens, urethra, epididymis, scrotum, penis, and testes. Items referring to the female human reproductive system are limited to the ovaries, oviduct (fallopian tube), uterus, cervix, and vagina. Items assessing the function of the placenta, umbilical cord, amniotic sac, and amniotic fluid are limited to how these structures relate to the development of the fetus. Items will not assess physiological or hormonal changes of the mother during pregnancy. Items assessing the production of hormones in the context of the physiology of the human reproductive system are limited to a conceptual understanding of the production of hormones.
Content limits cont. Items will not assess hormonal control during pregnancy. Items may refer to the early stages of development (implantation, morula, blastocyst, gastrulation, neurulation) but will not assess the definition of these terms. Items referring to changes in each trimester are limited to normal human development. Items will not assess specific knowledge of malformations in the human fetus, miscarriages, maternal preexisting conditions, genetic conditions, or the impact of exposure to environmental conditions. Items will not assess the utilization of technology to assist in or prevent fertilization or monitor development of the fetus. Items will not address or assess the menstrual cycle. Stimulus Attribute Illustrations or diagrams may be used. Response Attributes None specified Prior Knowledge Items may require the student to apply scientific knowledge described in the NGSSS from lower grades. This benchmark requires prerequisite knowledge of SC.6.L.14.5.
Male Reproductive System Scrotum contains: Testes –The seminiferous tubules produce sperm and testosterone –Require a low temperature –Sperm live up to 72 hrs. in a female Epididymis - folds of tissue (700 ft long) –Lies on top of the testes –Sperm mature here with aid from helper sperm (mask the 23 chromosome sperm from immune system)
Vas deferens –Connects the external scrotum to the internal pathway. –Curves around the bladder, stores sperm, empties into the urethra –Sperm travel through this during ejaculation Urethra – glands including the prostate gland produce a fluid that combines with the sperm to produce semen, enters here –semen flows through the urethra along with sperm during ejaculation (out the penis)
Female Reproductive system (oviduct)
Female Reproductive System Ovaries - pair, internal –Mature and release one egg/month –Matures in the follicles within the ovaries –Born with all the eggs a female will ever have –2 million at birth; thousand at puberty; 400 will mature and be released –Once the egg has been released by the follicles, the follicles will release hormones for child development if fertilization takes place
Oviducts or Fallopian tubes –Feathery like projections –After ovulation (releasing of the egg) occurs, the egg enters one of the oviducts –This is where fertilization occurs as the egg only lives 6-24 hrs. –The egg can’t move so it relies on cilia that lines the duct to cause a current along with muscle contraction (cramps at ovulation) –Fertilized egg zygote embryo Female Reproduction
Uterus –Embryo will embed itself in lining of uterus This causes a hormone to be released (+ pregnancy test result) –Embryo will develop into a fetus –Uterus: 5 cm wide but expands to 30 cm –Thick walled muscular organ above the bladder Cervix –This opening connects the vagina to the uterus –Opening is usually 1 cm wide, but during birth, expands to 10 cm Vagina –Birth canal, site of sexual intercourse, site of menstruation – acidic for immunity reasons
Fetal Development The fertilized egg implants into the uterus and is nourished by the placenta and umbilical cord. The zygote becomes a blastocyst and implants in the uterus. blastocyst uterine wall Implantation of blastocyst
placenta umbilical cord uterus amniotic sac The blastocyst becomes an embryo. Embryonic membranes protect and nourish the embryo. –amniotic sac cushions embryo. –amniotic fluid in the amniotic sac –placenta connects mother and embryo. –umbilical cord connects embryo to placenta.
Construct a six-page flip-chart Label the exposed tabs as –First trimester –Second trimester –Third trimester –Problems That can occur and when –Affects of drugs (have a list of drugs you want them to research) ** or place the last two topics first as there is less room on the foldable to write information. Indicate the important changes that occur in each stage as we cover it in class Research problems that can occur if the developing fetus is exposed to drugs such as alcohol or tobacco. FETAL DEVELOPMENT Instruction on how to make a foldable Insert info as we go through the content
A zygote develops into a fully formed fetus in about 38 weeks. Human pregnancies are divided into trimesters. –1st trimester: body plan and early development –Most genetic issues occur here
–2nd trimester: fetus more active, developed
Second Trimester
–3rd trimester: all organs fully formed After about 38 weeks, fetus is ready to be born.
Third Trimester
Fetal development Interactive Developmental Time Line Activity - Human fetal growth
Follow-up Q/A Board Problem solving issues in class Additional activities: Fetal Development sonograms by weeks
EOC Study Guide {SC.912.L.14.52} Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and antibiotics. –1. Give an example of specific and non specific responses. –2. How do vaccines prevent disease? –3. How do antibiotics prevent disease? {SC.912.L.14.26} Identify the major parts of the brain on diagrams or models. –Draw a brain and label the major parts: Cerebellum, Cerebrum, frontal, parietal, temporal, occipital, Pons, stem {SC.912.L.14.36} Describe the factors affecting blood flow through the cardiovascular system. –1. Describe plaque and the relation to cholesterol and heart attacks –2. Describe high blood pressure/ low blood pressure –3. Describe normal events (i.e. exercise, relaxation) that effect blood flow –4. Compare and Contrast arteries, veins and capillaries {SC.912.L.16.13} Describe the basic anatomy and physiology of the human reproductive system. –1. Describe the process of human development from fertilization to birth and major changes that occur in each trimester of pregnancy (i.e. fertilization, embryo formation, tube formation, organ system formation, heart beat, movement. –Define embryo
Post Test Thank you! We’ll see you again on April 14 th when we will cover the topics of Evolution and Classification.