Wir schaffen Wissen – heute für morgen 8. Januar 2014PSI,8. Januar 2014PSI, Paul Scherrer Institut Status of CAVITY BPM RFFE & ADC June 24, 2010 Markus.

Slides:



Advertisements
Similar presentations
GSM Receiver Key Parameters
Advertisements

D. Wei, Y. Huang, B. Garlepp and J. Hein
FIGURE 12.1 Two variable process-control loops that interact.
FIGURE 3.1 System for illustrating Boolean applications to control.
NOAA’s National Weather Service
0 - 0.
TDC130: High performance Time to Digital Converter in 130 nm
Noise Lecture 6.
F( )xy = f(x) Any f(x) can be represented as a Taylor series expansion: a 0 represents a DC offset a 1 represents the linear gain a 2 represents the 2.
Chapter 3: PCM Noise and Companding
Subject : Advance Electronics
Review 0、introduction 1、what is feedback?
A Stabilization Technique for Phase-Locked Frequency Synthesizers Tai-Cheng Lee and Behzad Razavi IEEE Journal of Solid-State Circuits, Vol. 38, June 2003.
Charge Pump PLL.
HARP-B Local Oscillator
1 Chelmsford Amateur Radio Society Intermediate Licence Course Anthony Martin M1FDE Slide Set 7: v May-2009 (4) Receivers Chelmsford Amateur Radio.
1 Chelmsford Amateur Radio Society Advanced Licence Course Anthony Martin M1FDE Slide Set 9: v1.0, 24-Aug-2004 (4) Receivers-1 - Parameters Chelmsford.
DAM-Île de France Département Analyse, Surveillance, Environnement 06/06/2014 DIF/DASE/B.ALCOVERRO 1 INFRASOUND SENSOR CALIBRATION DEVICE 13/11/2001 Infrasound.
S Transmission Methods in Telecommunication Systems (5 cr)
Intermediate Course (4) Receivers Karl Davies East Kent Radio Society EKRS 1.
Intermediate Course (4) Transmitters Karl Davies East Kent Radio Society EKRS 1.
25 seconds left…...
TS01 Klystron Modulator Minh Nguyen May 20, 2014 Beam Voltage Stability Improvements.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 21: Alternating Currents Sinusoidal.
Interfacing to the Analog World
Chapter 13: Digital Control Systems 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 13 Digital Control Systems.
// RF Transceiver Design Condensed course for 3TU students Peter Baltus Eindhoven University of Technology Department of Electrical Engineering
Figure An amplifier transfer characteristic that is linear except for output saturation.
ECE 424 – Introduction to VLSI
Analog Electronics Workshop (AEW) Apr 3, Contents Intro to Tools Input Offset Input and Output Limits Bandwidth Slew Rate Noise EMIRR Filtering.
Update of EXT Stripline BPM Electronics with LCLS-style Digital BPM Processors Glen White, with slides by Steve Smith 15 December 2009 ATF2.
10/23/2003ME DAC Lecture1 DAC Sunij Chacko Pierre Emmanuel Deliou Thomas Holst Used with modification.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
Polar Loop Transmitter T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, I. Gheorghe.
Bob Lill Undulator Systems – Cavity BPM October 12, 2006 Undulator Cavity BPM Status.
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
RF Synchronisation Issues
Phase noise measurements in TRIUMF ISAC 2 cryomodule K. Fong, M. Laverty TRIUMF.
1 Phase-Locked Loop. 2 Phase-Locked Loop in RF Receiver BPF1BPF2LNA LO MixerBPF3IF Amp Demodulator Antenna RF front end PD Loop Filter 1/N Ref. VCO Phase-
BY MD YOUSUF IRFAN.  GLOBAL Positioning System (GPS) receivers for the consumer market require solutions that are compact, cheap, and low power.  This.
Wir schaffen Wissen – heute für morgen 24 August 2015PSI,24 August 2015PSI, Paul Scherrer Institut Status WP 8.2 RF Low Level Electronic Manuel Brönnimann.
LLRF System for Pulsed Linacs (modeling, simulation, design and implementation) Hooman Hassanzadegan ESS, Beam Instrumentation Group 1.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
1 LLRF Pre-readiness review (26th May, 2009) 27/10/2015 LLRF performance and its limitation based on KEK's experiments Shin Michizono (KEK) KEK’s LLRF.
Frank Ludwig, DESY Content : 1 Stability requirements on phase and amplitude 2 Available technologies and selection of the detector concept 3 Proposed.
1 C. Simon CLIC Instrumentation workshop BPM C. Simon on behalf of the Saclay’s group CLIC Instrumentation workshop 2 nd - 3 rd June.
IP-BPM status Siwon Jang KNU. Contents The electronics repair status –Repair work status –Electronics RF test (by using Oscilloscope) –Electronics shipment.
Future FONT BPM Processors C.Perry 25 June Types of Processor Two types of processor: a) present mixer type b) baseband type Both will be made because:
Frank Ludwig, DESY Content : 1 Stability requirements for phase and amplitude for the XFEL 2 Next LLRF system for optimized detector operation 3 Limitations.
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser 1 Frank Ludwig, DESY XFEL-LLRF-ATCA Meeting, 3-4 December 2007 Downconverter Cavity Field.
Collimator BPM electronics – Results from the lab, SPS and LHC
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Intensity measurements using TRIC Juan Carlos Allica On behalf of: M. Andersen, D. Belohrad, L. Jensen, F. Lenardon, A. Monera, L. Søby 1.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
High precision phase monitoring Alexandra Andersson, CERN Jonathan Sladen, CERN This work is supported by the Commission of the European Communities under.
RF low level control & synchronization A. Gallo, M. Bellaveglia, L. Cacciotti SPARC review committee – ENEA Frascati – 16/11/2005.
April 12 | Comparison of Sophisticated Synthesizer Concepts and Modern Step Attenuator Implementations | 2 Comparison of Sophisticated Synthesizer Concepts.
1CEA/ Saclay/ SACM CARE/SRF/WP11 Development of a new Beam Position Monitor for FLASH, XFEL and ILC Cryomodules Claire Simon, Michel Luong, Stéphane Chel,
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Intra Pulse Phase Control Manuel Brönnimann :: Paul Scherrer Institut LLRF Workshop 2015.
CI Lecture Series Summer 2010 An Overview of IQ Modulation and Demodulation Techniques for Cavity LLRF Control.
Communication 40 GHz Anurag Nigam.
12.4: SRF HOM Diagnostics: Experimental Results and Future Plans
RF Synchronisation Issues
WP02 PRR: Master Oscillator and RF Reference Distribution
RF Front End Radio Design- Simulations and Specifications
Stefan Ritt Paul Scherrer Institute, Switzerland
Undulator Cavity BPM Status
Breakout Session SC3 – Undulator
PDR of Master Oscillator
Presentation transcript:

Wir schaffen Wissen – heute für morgen 8. Januar 2014PSI,8. Januar 2014PSI, Paul Scherrer Institut Status of CAVITY BPM RFFE & ADC June 24, 2010 Markus Stadler

Talk agenda M. Stadler Cavity BPM RFFE & ADC - Status Seite 2 RFFE overview Mesurement results Redesign measures Performance expectation of BPM system Outlook

Front-End redesig: RF section LO generator mixer Range switch 3.3GHz BPF IF amp. / filter M. Stadler Cavity BPM RFFE & ADC - Status Seite 3

Prototype RFFE: System overview Seite 4 direct downconversion to (near) zero IF tunable (in steps) LO frequency tunable LO phase on-board conversion clock generation for ADC M. Stadler Cavity BPM RFFE & ADC - Status

Pulse response Seite 5 Baseline=ADC-offset M. Stadler Cavity BPM RFFE & ADC - Status

Distance measurement principle Seite 6 R Y Basic distance calculation: R and Y are in ADC-LSB, k y is in μm M. Stadler Cavity BPM RFFE & ADC - Status

Jitter estimation (1) Seite 7 Estimating position jitter from equivalent ADC input noise Position jitter: k Y : proportionality constant (meas.range/2) Y,R: Y- and Reference channel peak amplitudes (ADC LSB or volts) σ R, σ Y : ADC equivalent input noise (LSB rms or volts rms) Estimation (rather than calculation) because only additive noise is considered ! M. Stadler Cavity BPM RFFE & ADC - Status

Jitter estimation Seite 8 RFFE / ADC total noise (ADC equivalent input noise) CHRFFE 1 (μV-rms)RFFE 2 (μV-rms) I_REF Q_REF I_Y Q_Y I_Z Q_Z ADC (LTC2206) high gain mode (FS=1.5Vpp) Measurement: Calculation: System noise (figure) calculation yields 169 μV-rms M. Stadler Cavity BPM RFFE & ADC - Status

BPM Prototype Resolution Measurement (SLS-Linac) Seite 9 Measurement principle: Measure of identical signals with two independend BPM Systems and correlate measured distances measured D2 (μm) measured D1 (μm) Assuming identical distributions of measurements D1 and D2: M. Stadler Cavity BPM RFFE & ADC - Status

Example measurement series (1) Seite 10 Settings: 0.15nC / 400 μ m ADC: High-Gain mode (FS=1.5Vpp) jitter: 0.61 μm-rms (measured) 0.62 μm (calculated) M. Stadler Cavity BPM RFFE & ADC - Status

Example measurement series (2) Seite 11 Settings: 0.3nC / 500μm ADC: High-Gain mode (FS=1.5Vpp) jitter: 0.33 μm-rms (measured) 0.28 μm (calculated) M. Stadler Cavity BPM RFFE & ADC - Status

RFFE Pulse Linearity Measurements Seite 12 ADC FS Prototype System pulse linearity: M. Stadler Cavity BPM RFFE & ADC - Status

Front-End redesig: Local temperature control Prototype RFFE temperature dependence suggests that temperature should be stabilized to better than 0.5 ºC In redesigned RFFE several local temperature control loops applied Measured amplitude temperature dependence of prototype RFFE Temperature: Absolute amplitude drift (incl. switch-on drift): Drift of amplitude ratio: Ca. 0.1% per deg-C M. Stadler Cavity BPM RFFE & ADC - Status Seite 13

Conclusion from Measurements Seite 14 Measurement jitter is < 1 μm Measured jitter in good agreement with calculation Temperature sensitivity needs improvement Linearity is within 2% Additive noise sources in signal chain dominate the jitter performance Synthesizer phase noise / timing jitter do not significantly degrade performance Redefinition of charge ranges improves resolution local temperature control Measurements on prototype system suggest the following conclusions: not much margin ! Difficult to measure simple and cheap PLL- synthesizers can be retained M. Stadler Cavity BPM RFFE & ADC - Status

Front-End Redesign (1) Seite 15 RFFE control via single I 2 C-bus Temperature controlled critical circuit parts 216 MHz machine reference (previously 81MHz) IF-amplifier redesigned providing gain control (Pick-up tolerances) Redefinition of charge ranges Hot-Swap controlling Main RFFE design changes: M. Stadler Cavity BPM RFFE & ADC - Status

Front-End redesign (2) RF Phase Control (360 deg) RF frequency control (9MHz steps) Conversion Clock Phase Control 12 Local Temperature Stabilizaiton areas on the PCB (analog or digital) around sensitive circuit parts Charge Range control (3 ranges from 0.1 to 1nC, 1 low charge range) 160MHz / +12dBm ADC clock output Main RFFE design changes: M. Stadler Cavity BPM RFFE & ADC - Status Seite 16

Front-End redesig: Local temperature control Local temperature control circuit: Temperature sensitive circuits are locally heathed at 2-5ºC above their free-running steady state temperature. This will consume about 300mA of extra current (whole RFFE) Temperature stabilization: analog or digital control Temperature readout resolution 0.04 ºC M. Stadler Cavity BPM RFFE & ADC - Status Seite 17

Front-End redesig: RF section Prototype: 2 charge ranges Upper range: 0.3-1nC Lower range: nC Charge ratio =3.3 Redesigned: 3+1 charge ranges Upper range: nC Mid range: nC Low range: nC (additional range: <0.1 nC) charge ratio =2.1 Max position jitter ~ (charge ratio) · (meas. range) M. Stadler Cavity BPM RFFE & ADC - Status Seite 18

Linearity dictates 0dBm at full-scale offset and charge Minimum pickup sensitivity: 0dBm at mixer max. beam offset and upper bound of lowest charge range (WITHOUT an RF amplifier) In our case (2.2dB cable loss for 6m of RF cable and 0.21nC bunch charge): 6 mV/(nC·um) for ±1000 um 3 mV/(nC·um) for ±500 um Cable lossRF-path loss Pick-Up sensitivity for lower charge ranges First priorities to maintain resolution at lower charge ranges (<0.1nC) would be: Reduce losses in cable and RFFE RF-part Increase pick-up sensitivity M. Stadler Cavity BPM RFFE & ADC - Status Seite 19

Redesigned RFFE block diagram M. Stadler Cavity BPM RFFE & ADC - Status Seite 20

Expected Performance of 2 nd Prototype Seite 21 Single bunch resolution (μm-rms) Performance estimation based on calculations and measurements on 1 st prototype: Temperature sensitivity <0.3 %/ºC linearity<2% Bunch to bunch crosstalk <1 μm (digital comp.) For a complete list of performance numbers see project doc. Charge Range Charge (nC) Beam offset (μm) high mid low M. Stadler Cavity BPM RFFE & ADC - Status

Outlook Seite 22 StatusStart dateEnd date Schematic drawing Review PCB layout StartedJul 2010 Mechanical drawings (shield, front-panel Aug 2010 PCB assembly Aug 2010 Laboratory tests Sept 2010 Tests (SwisFEL 250MeV injector) Sept 2010 (?) Tests FLASH Nov 2010 (?) M. Stadler Cavity BPM RFFE & ADC - Status

Seite 23 Thanks ! M. Stadler Cavity BPM RFFE & ADC - Status