ОТЧЕТ ИЯИ РАН за 2007 год Участвует 16 сотрудников ОСНОВНОЕ НАПРАВЛЕНИЕ ИССЛЕДОВАНИЙ – построение моделей за рамками СМ, феноменологический анализ процессов.

Slides:



Advertisements
Similar presentations
Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Advertisements

Measurement of Relic Density at the LHC1 Bhaskar Dutta Texas A&M University Bhaskar Dutta Texas A&M University Measurement of Relic Density at the LHC.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Guoming CHEN The Capability of CMS Detector Chen Guoming IHEP, CAS , Beijing.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
Looking for SUSY Dark Matter with ATLAS The Story of a Lonely Lepton Nadia Davidson Supervisor: Elisabetta Barberio.
1 Discovering New Physics with the LHC Nadia Davidson Supervisor: Elisabetta Barberio EPP Nobel Prize for Physics in 2010:
Higgs and SUSY at the LHC Alan Barr on behalf of the ATLAS and CMS collaborations ICHEP-17 Aug 2004, Beijing ATLAS.
Paris 22/4 UED Albert De Roeck (CERN) 1 Identifying Universal Extra Dimensions at CLIC  Minimal UED model  CLIC experimentation  UED signals & Measurements.
Searches for New Physics Motivations Examples Searches so far Setting scene for LHC 1/12.
New Physics at the LHC/ILC B-L Workshop, LBNL September, 2007 Sally Dawson (BNL)
Search for Anomalous tWb Couplings at D0, L. Li (Shanghai Jiao Tong University) SUSY 2012, August 16, Liang Li Shanghai Jiao Tong University Search.
1Alan Barr PASCOS 09 PASCOS 2009 DESY 9 July 2009 …AT THE LHC DARK MATTER … Alan Barr University of Oxford On behalf of the ATLAS and CMS collaborations.
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
SUSY at the LHC Yeong Gyun Kim (Sejong U. & KAIST) HPC Asia 2007 (September. 9-12, 2007 Seoul, Korea)
Center for theoretical Physics at BUE
The Dark Side of the Universe What is dark matter? Who cares?
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
LHC Olympics Yeong Gyun Kim (KAIST)
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Inclusive analysis of supersymmetry in EGRET-point with one-lepton events: pp → 1ℓ + 4j + E Tmiss + Х V.A. Bednyakov, S.N. Karpov, E.V. Khramov and A.F.
SUSY searches at the LHC Arthur M. Moraes Brookhaven National Laboratory (on behalf of the ATLAS Collaboration) LISHEP 2006 – Workshop on Collider Physics.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
Search for a Z′ boson in the dimuon channel in p-p collisions at √s = 7TeV with CMS experiment at the Large Hadron Collider Search for a Z′ boson in the.
ATLAS Dan Tovey 1 Measurement of the LSP Mass Dan Tovey University of Sheffield On Behalf of the ATLAS Collaboration.
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
1 Physics at Hadron Colliders Lecture IV CERN, Summer Student Lectures, July 2010 Beate Heinemann University of California, Berkeley Lawrence Berkeley.
SUSY08 Seoul 17 June 081 Daniel Teyssier RWTH Aachen University Searches for non-standard SUSY signatures in CMS on behalf of the CMS collaboration.
Searching for New Matter with the D0 Experiment Todd Adams Department of Physics Florida State University September 19, 2004.
SUSY Studies with ATLAS Experiment 2006 Texas Section of the APS Joint Fall Meeting October 5-7, 2006 Arlington, Texas Nurcan Ozturk University of Texas.
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
The Search For Supersymmetry Liam Malone and Matthew French.
Physics 222 UCSD/225b UCSB Lecture 16 Supersymmetry A purely phenomenological perspective. Disclaimer: I am not an expert on SUSY !!! All you get should.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
RECENT RESULTS FROM THE TEVATRON AND LHC Suyong Choi Korea University.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
WIN 05, Delphi, Greece, June 2005Filip Moortgat, CERN WIN 05 Inclusive signatures: discovery, fast but not unambiguous Exclusive final states & long term.
03/31/2006S. M. Lietti - UED Search at SPRACE 1 Universal Extra Dimensions Search at SPRACE S. M. Lietti DOSAR Workshop at U.T. Arlington.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
ATLAS physics – an introduction Alan Barr, University of Oxford.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
SPS5 SUSY STUDIES AT ATLAS Iris Borjanovic Institute of Physics, Belgrade.
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
880.P20 Winter 2006 Richard Kass 1 Detector Systems momentumenergy A typical detector beam looks something like: BaBar, CDF, STAR, ATLAS, GLAST…… particle.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
BSM YETI Meeting 10 th Jan SUSY Decays Peter Richardson IPPP, Durham.
Search for Anomalous Production of Multi-lepton Events at CDF Alon Attal Outline  Motivation  R p V SUSY  CDF & lepton detection  Analysis  Results.
SESAPS November 11, B. Scurlock, University of Florida1 Bobby Scurlock Darin Acosta Paolo Bartalini Richard Cavanaugh Alexey Drozdetskiy Guenakh.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
Journées de Prospective
Physics Overview Yasuhiro Okada (KEK)
Search for BSM at LHC Fayet Fest Paris November 9, 2016 Dirk Zerwas
Higgs and SUSY at future colliders
mSUGRA SUSY Searches at the LHC
Physics at a Linear Collider
Physics Overview Yasuhiro Okada (KEK)
Yasuhiro Okada (KEK) April 17, 2003, CAT, Indore, India
Physics Overview Yasuhiro Okada (KEK)
SUSY SEARCHES WITH ATLAS
& Searches for Squarks and Gluinos at the Tevatron
Inclusive Measurements as an mSUGRA Signal with ATLAS
Presentation transcript:

ОТЧЕТ ИЯИ РАН за 2007 год Участвует 16 сотрудников ОСНОВНОЕ НАПРАВЛЕНИЕ ИССЛЕДОВАНИЙ – построение моделей за рамками СМ, феноменологический анализ процессов при энергии коллайдера LHC, полное моделирование отклика детектора CMS

ОСНОВНЫЕ РЕЗУЛЬТАТЫ  Выполнен полный расчет с учетом отклика детектора CMS по следующим темам: эксклюзивное рождение слептонов для сигнатуры l + l - + E T miss + no jets поиск суперсимметрии и нарушения лептонного флейворного числа на основе сигнатуры e ±   + E T miss поиск правого заряженного калибровочного бозона и тяжелого нейтрино на основе сигнатуры e + e jets  Разработано программное обеспечение для статистической обработки данных эксперимента CMS

ОСНОВНЫЕ РЕЗУЛЬТАТЫ (II) Эти результаты вошли в CMS Physics Technical Design Report Vol.II Physics Performance. Группой ИЯИ РАН по этим темам опубликовано три CMS Analysis Notes (из 60, составивших основу PhTDR). Доля группы ИЯИ РАН составила 5%. Группа ИЯИ РАН внесла основной вклад в готовящийся в ЦЕРНе отчет о результатах рабочей встречи “Flavour in the LHC Epoch”

НЕКОТОРЫЕ ПУБЛИКАЦИИ CMS Collaboration (Austin Ball et al.). CMS technical design report, volume II: Physics performance. J.Phys.G34: ,2007. Yu.M. Andreev, S.I. Bityukov, N.V. Krasnikov, A.N. Toropin. Using the e+- mu-+ + E**miss(T) signature in the search for supersymmetry and lepton flavour violation in neutralino decays. Phys.Atom.Nucl.70: ,2007. S.N. Gninenko, M.M. Kirsanov, N.V. Krasnikov, V.A. Matveev. Detection of heavy Majorana neutrinos and right-handed bosons. Phys.Atom.Nucl.70: ,2007. N.V. Krasnikov. Unparticle as a field with continuously distributed mass. Int.J.Mod.Phys. A22: 5117, N.V. Krasnikov et al. Searching for energetic cosmic axions in a laboratory experiment: Testing the PVLAS anomaly. Eur.Phys.J. C52: , S.N. Gninenko, N.V. Krasnikov, A. Rubbia. Search for millicharged particles in reactor neutrino experiments: A Probe of the PVLAS anomaly. Phys.Rev.D75:075014,2007.

НЕКОТОРЫЕ ДОКЛАДЫ N.V.Krasnikov, V.A.Matveev. Search for new physics at LHC. Proceedings XIII Lomonosov conference on elementary particle physics, Moscow, Russia, August, 2007.

Отчет НИИЯФ МГУ за 2007 год Участвует 11 сотрудников ОТФВЭ Основные направления исследований 1. Построение моделей за рамками СМ, расчеты и феноменологический анализ процессов при энергиях коллайдеров Tevatron, LHC, ILC Некоторые результаты - первое наблюдение одиночного рождения топ-кварка в экпарименте D0 c использованием генератора SingleTop (CompHEP) для моделирования сигнала - исследованы перспективы поика одиночного топ-кварка на LHC, поиск на его основе W'-бозона, FCNC, anom.Wtb - проведен анализ возможностей поиска KK-состояний в стабилизированной RS модели, перспективы поиска под порогом рождения KK-состояний - исследованы возможности поика бозона Хиггса в сценариях а явных CP нарушением 2. Автоматизация вычислений и генерации событий Некоторые результаты - создана новая версия программы CompHEP с новым стандартом записи событий - реализована новая версия генератора SingleTop на базе CompHEP с включением FCNC и WTb anomalous couplings

V.M.Abazov,..., E.E.Boos,..., V.E.Bunichev,...L.V.Dudko... et al. [D0Collaboration], Evidence for production of single top quarks and first direct measurement of |V(tb)|, Phys. Rev. Lett. 98 (2007) G.~L.~Bayatian et al. [CMS Collaboration], CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995. E.Boos, V.Bunichev, L.Dudko and M.Perfilov, Interference between W' and W in single-top quark production processes, Phys. Lett. B 655 (2007) 245 E.Akhmetzyanova, M.Dolgopolov, M.Dubinin Supersymmetric threshold corrections to the Higgs sector in the MSSM featuring explicit CP violation, Ядерная физика, т.70, вып.9, с.1549 (2007)‏ E.E.Boos, V.E.Bunichev, M.N.Smolyakov and I.P.Volobuev, Testing extra dimensions below the production threshold of Kaluza-Klein excitations,'' Preprint: arXiv: [hep-ph] E.~Boos, V.~Bunichev and H.~J.~Schreiber, Prospects of a Search for a New Massless Neutral Gauge Boson at the ILC, Preprint arXiv: [hep-ph] J.Alwall, E.Boos,..., L.Dudko,..., A.Sherstnev et al. А standard format for Les Houches event files Comput. Phys. Commun. 176 (2007) 300 Некоторые публикации

CompHEP (НИИЯФ МГУ): Автоматические символьные и численные вычисления Автоматические символьные и численные вычисления от задания Лагранжиана до моделирования событий от задания Лагранжиана до моделирования событий Программа в свободном доступе CompHEP – инструмент теоретических исследований в физике высоких энергий CompHEP коллаборация: Э.Боос, В.Буничев, М.Дубинин, Л.Дудко, В.Еднерал, В.Ильин, А.Крюков, В.Саврин, А.Семенов, А.Шерстнев Встроенные модели: Стандартная модель МССМ Лептокварки, W’, аномальные Wtb и FCNC вершины Модели с дополнительными измерениями …….

Single Top Quark First evidence for Single top production at Fermilab in 2007 Active participation of SINP MSU physicists in the D0 analysis. D0 Experience CMS Analysis Generator SingleTop (based on CompHEP) for the signal

CMS Single Top Search  PTDR v.II (Cut based analysis)‏  Improved by Neural Network (CMS- IN-2007/045)‏  1fb -1 : Evidence  10fb -1 : Discovery; |V tb |, Mtop; W', FCNC, anomalous Wtb RDMS Team (part of the international single top group) SINP MSU: E.Boos, V.Bunichev, L.Dudko, A.Markina, V.Savrin IHEP: V.Abramov, A.Ashimova, D.Konstantinov, S.Slabospitsky

Introduction Large Hadron Collider (LHC) Start: 2008 Two proton beams with total energy E = 14 TeV Low luminosity stage with L low = cm -2 s -1 Remember: Nev = sigma Lt with total luminosity L t = 10 fb -1 per year Remember: 1 fb = cm 2 s -1 Two big detectors: CMS (Compact Muon Solenoid) ATLAS (A Toroidal LHC ApparatuS) In this talk we review the search for supersymmetry

Total weight 7000 t Overall diameter 25 m Barrel toroid length 26 m End-cap end-wall chamber span 46 m Magnetic field 2 Tesla Total weight t Overall diameter m Overall length 21.6 m Magnetic field 4 Tesla Detector subsystems are designed to measure: energy and momentum of ,e, , jets, missing E T up to a few TeV ATLAS and CMS Experiments Large general-purpose particle physics detectors Compact Muon Solenoid A Large Toroidal LHC ApparatuS

Search for Supersymmetry Y.A.Goldman and E.P.Likhtman D.V.Volkov and V.P.Akulov J.Wess and B.Zumino Why we like SUSY? elegant theory technical solution of the gauge hierarchy problem dark matter  LSP is natural candidate consistent string theories are superstring theories

SUSY, Rules of the Game MSSM – minimal supersymmetric standard model based on gauge group. For each known particle  superanalog superparticle (the same mass and internal quantum numbers, difference only in spin) g (gluon, s = 1)  (gluino, s = ½) quarks (s = ½)  squarks (s = 0) leptons (s = ½)  sleptons (s = 0) gauge bosons (photon, Z- and W-bosons) (s =1)  gaugino (s = ½)

SUSY, Rules of the Game H 1, H 2 (two Higgs doublets) (s = 0)  Higgsino (s =1/2) As a result of gaugino and higgsino mixing in mass spectrum: two chargino (s = ½) four neutralino (s = ½ ) R-parity conservation postulate  to get rid of dangerous terms leading to fast proton decay. For ordinary particles R = +1

SUSY, Rules of the Game For sparticles R = -1 R-parity is conserved by construction Two important consequences: 1. At supercolliders sparticles are pair produced 2. The lightest sparticle (LSP) is stable:  dark matter candidate Note that SUSY models with R-parity violation are possible

mSUGRA Model So SUSY has to be broken and in general masses of sparticles (squarks, sleptons, gluino, gaugino, higgsino) are arbitrary that makes analysis extremely difficult. For LHC most calculations were done within so called mSUGRA model  squark, slepton, higgsino masses are universal at GUT scale  m 0 Gaugino masses also universal  m 1/2

Sparticle Production From cosmology and astrophysics  LSP is weakly interacting neutral particle. As a result LSP escapes from detection (analog of neutrino)  SUSY events are characterized by nonzero transverse missing momentum. In real life SUSY has to be broken 1. gravity mediated SUSY breaking 2. gauge mediated SUSY breaking

Sparticle Production At LHC sparticles can be produced via reactions: For squarks and gluino with masses O(1) TeV squark and gluino cross sections O(1) pb

The Total SUSY Cross Sections

LHC SUSY Searches Typical Signature/decay chain: Strongly interacting sparticles (squarks, gluinos) dominate production. Heavier than sleptons, gauginos etc. g cascade decays to LSP. Potentially long decay chains and large mass differences –Many high p T objects observed (leptons, jets, b-jets). If R-Parity conserved LSP (lightest neutralino in mSUGRA) stable and sparticles pair produced. –Large E T miss signature (c.f. Wgl ). SUSY Searches Inclusive searches to detect SUSY with first data Exclusive studies – performed with more data to determine model parameters e.g. masses etc from end point measurements… l q q l g ~ q ~ l ~  ~  ~ p p ~

SUSY Signatures As a result of squark, gluino decays and chargino and neutralino decays, the most interesting signatures for the search for SUSY at LHC are: multijets plus E T miss events 1l plus jets plus E T miss events 2l plus jets plus E T miss events 3l plus jets plus E T miss events 4l plus jets plus E T miss events

Recent CMS Full Simulation Results SUSY signatures: 1. E miss T + (n > 2) jets For tan(beta) =10, m 0 = 60 GeV, m 1/2 =250 GeV, sign(mu) = +1 the 5 sigma discovery is for L t =2 pb -1 first 4 hours of LHC work !!! 2. The same sign dimuons + E miss T + (n>2) jets For L t =10 fb -1 SUSY masses up to 1.5 TeV

CMS SUSY Discovery Potential

Recent CMS Full Simulation Results 3. Single muon + E miss T + (n>2) jets For L t = 100 fb -1 5 sigma discovery for SUSY masses up to 2TeV. 4. Opposite sign leptons + E miss T + (n>2) jets Basically similar to signature with single muon

Dilepton Invariant Mass Distribution for the Test Point LM1

LHC SUSY Discovery Potential The main conclusion is that for mSUGRA model LHC will be able to discover SUSY with squark and gluino masses up to 2.5 TeV for L tot = 100 fb -1 Chargino and neutralino pairs produced through DY mechanism may be detected through their leptonic decays The signature: 3 isolated leptons without jet activity. LHC is able to detect such DY production with masses up to 200 GeV

Determination of Sparticle Masses In many cases LHC is able not only to discover SUSY but to determine SUSY breaking parameters (combinations of sparticle masses). For instance, using l + l - invariant mass distribution in reaction it is possible to determine the combination as endpoint in edge structure with the accuracy of 2-3%

Conclusions  CMS & ATLAS have significant discovery potential  LHC will be able to discover SUSY with squark and gluino masses up to 2.5 TeV. There is nonzero probability to find something beyond SM or MSSM(extra dimensions, Z ’ -boson, compositeness...)  Heavy gauge bosons up to ~5-6 TeV  Heavy neutrino up to 2.6 TeV  RS model ED up to ~4 TeV

Conclusions At any rate after LHC we will know the mechanism of electroweak symmetry breaking (Higgs boson or something more exotic?) and the basic properties of the matter structure at TeV scale.