ROI analyses using FSL March 27, 2013.

Slides:



Advertisements
Similar presentations
NA-MIC National Alliance for Medical Image Computing Slicer Tutorial Module: Segmentation May 26, 2005.
Advertisements

Clinical case studies Volumetric Measurements Visualization & Change Tracking Perfusion Analysis PET/CT Image Analysis Volumetric Analysis using 3D Slicer:
2nd level analysis – design matrix, contrasts and inference
Buttons in SPM5 Carolyn McGettigan & Alice Grogan Methods for Dummies 5 th April 2006.
Buttons in SPM5 Seán O’Sullivan, ION Alice Jones, Dept of Psychology Alice Jones, Dept of Psychology Methods for Dummies 16 th Jan 2008.
Concepts of SPM data analysis Marieke Schölvinck.
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial / Registration Library: Case 29 - DTI converting and aligning diffusion.
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial / Registration Library: Case 03 - DTI aligning low-resolution diffusion.
MRI preprocessing and segmentation.
Gordon Wright & Marie de Guzman 15 December 2010 Co-registration & Spatial Normalisation.
Seed-based functional connectivity analysis
ImageJ tutorial showing the operations needed to calculate air-filled porosity for an example soil column.
Basics of fMRI Preprocessing Douglas N. Greve
SPM5 Tutorial, Part 1 fMRI preprocessing Tiffany Elliott May
Pickatlas Data Interoperability Joseph Maldjian, MD.
Overview Contrast in fMRI v contrast in MEG 2D interpolation 1 st level 2 nd level Which buttons? Other clever things with SPM for MEG Things to bear in.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
Region of Interests (ROI) Extraction and Analysis in Indexing and Retrieval of Dynamic Brain Images Researcher: Xiaosong Yuan, Advisors: Paul B. Kantor.
Integrating FreeSurfer and FSL FEAT
Surface-based Analysis: Intersubject Registration and Smoothing
Integrating FreeSurfer and FSL FEAT
2nd Level Analysis Jennifer Marchant & Tessa Dekker
Basics of fMRI Inference Douglas N. Greve. Overview Inference False Positives and False Negatives Problem of Multiple Comparisons Bonferroni Correction.
Research course on functional magnetic resonance imaging Lecture 2
DTIAtlasBuilder Adrien Kaiser Neuro Image Research and Analysis Laboratories University of North Carolina at Chapel Hill A tool to create an atlas from.
CT1514.  What is Motion Guide Layer?  Controls the movement of objects in a Motion tween animation  How to create a Motion Guide Layer?  Click on.
Brain Mapping Unit The General Linear Model A Basic Introduction Roger Tait
SPM5 Tutorial Part 2 Tiffany Elliott May 10, 2007.
1 Hands-On Data Analysis Kate Pirog Revill and Chris Rorden Data from safety training –9 subjects –Finger-tapping task (12s tapping, 12s rest) –188 scans.
Keith Worsley Department of Mathematics and Statistics, and McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Correlation.
Thresholding using FEAT
NA-MIC National Alliance for Medical Image Computing DTI Atlas Registration via 3D Slicer and DTI-Reg Martin Styner, UNC Clement Vachet,
Loading Standard DWI 1.File/Open Standard/Double click on “..”/Go To Altas directory/Go to JHU directory 2.Load JHU-ICMB-T2 1mm Image from Atlase directory.
Processing Your Own Data With FreeSurfer, certain variables must be set in order to use it correctly: FREESURFER_HOME SUBJECTS_DIR tell Operating System.
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial: Registration Library Case 14 Intra-subject Brain PET-MRI fusion.
FMRI ROI Analysis 7/18/2014 Friday Yingying Wang
Diffusion Tensor Imaging: The Nitty Gritty Brought to you by: Meenal and Erica November 2, 2010.
Correction for multiple comparisons in FreeSurfer
Statistical Parametric Mapping Lecture 11 - Chapter 13 Head motion and correction Textbook: Functional MRI an introduction to methods, Peter Jezzard, Paul.
NA-MIC National Alliance for Medical Image Computing Diffusion Tensor Imaging tutorial Sonia Pujol, PhD Surgical Planning Laboratory.
National Alliance for Medical Image Computing Core What We Need from Cores 1 & 2 NA-MIC National Alliance for Medical Image Computing.
MINC meeting 2003 Pipelines: analyzing structural MR data Jason Lerch.
NA-MIC National Alliance for Medical Image Computing fMRI Data Analysis in Slicer (short dataset tutorial) Steve Pieper Haiying Liu Wendy.
FEAT (fMRI Expert Analysis Tool)
Multi session analysis using FEAT David Field Thanks to…. Tom Johnstone, Jason Gledhill, FMRIB.
CIAT THREATS AML TOOL TUTORIAL Leonardo Sotomayor September, 2007.
Multimodal Integration surfer.nmr.mgh.harvard.edu
Methods for Dummies Second level Analysis (for fMRI) Chris Hardy, Alex Fellows Expert: Guillaume Flandin.
NA-MIC National Alliance for Medical Image Computing Slicer3 Tutorial Nonrigid Atlas Registration Dominik Meier, Ron Kikinis February.
Multimodal Integration surfer.nmr.mgh.harvard.edu.
MfD Co-registration and Normalisation in SPM
1 Berger Jean-Baptiste
© 2007 Business Connexion Business Consulting Using Microsoft Office Word 2003 to OPEN Downloaded File.
[Stage 19: artefact] [Stage 20: extraction of the white matter mask for the hemispheres.
User Tutorial Neoseg Pipeline 1.0 Marie Cherel, François Budin, Martin Styner NIRAL website:
CNC Motion BenchMill 6000 Machining Center
Multimodal Integration: Registration
Tutorial: AutoTract.
Multimodal Integration surfer.nmr.mgh.harvard.edu
2nd Level Analysis Methods for Dummies 2010/11 - 2nd Feb 2011
Population Projections Workshop
Multimodal Integration
NWSI Neuroimaging Web Services Interface
Methods for Dummies Second-level Analysis (for fMRI)
File Upload.
From buttons to code Eamonn Walsh & Domenica Bueti
The statistical analysis of fMRI data using FMRISTAT and MINC
Brain Registration and Multipurpose Postprocessing
Results from the ROI-restricted TBSS group analysis for the right dorsal cingulum. Results from the ROI-restricted TBSS group analysis for the right dorsal.
Fig. 2. Default mode network (DMN) patterns in each of the 3 groups and longitudinal changes after treatment. (A–C) ... Fig. 2. Default mode network (DMN)
Presentation transcript:

ROI analyses using FSL March 27, 2013

Overview Creating ROIs Creating atlas based ROIs Creating functional ROIs Drawing ROIs in FSLview Registering ROI in standard space to single subject space Extracting data from the ROI (mean intensity, variance, zstat, and timecourse)

Creating an atlas based ROI - Each atlas is a single volume/mask, with regions delineated by intensities - Using fslview, open the 2mm MNI standard brain > fslview & > File > Open Standard > /usr/local/packages/fsl-5.0.1/data/standard/ MNI152_T1_2mm_brain - Add the AAL atlas (aal_MN_v4.nii) from /usr/local/packages/MATLAB/WFU_PickAtlas_3.0.1/wfu_pickatlas/MNI_atlas_templates/ >File > Open > /usr/local/packages/MATLAB/WFU_PickAtlas_3.0.1/wfu_pickatlas/MNI_atlas_templates/aal_MN_v4.nii - Find the region you are interested in extracting (for example Right Precentral Gyrus) - You can also use the atlas tools to help you with your anatomy: >Tools > Toolbars > Atlas Tools * Note the intensity of the region you will need this value to extract 

Extract ROI from atlas - For example: Extract right precentral gyrus ROI from the atlas using fslmaths Helpful hint: type fslmaths on the command line to see info on its usage On the command line: fslmaths /usr/local/packages/MATLAB/WFU_PickAtlas_3.0.1/wfu_pickatlas/MNI_atlas_templates/aal_MNI_V4.nii –thr 2 –uthr 2 right_precentral - Input is the full atlas image path thr: threshold input image (zero everything below) uthr: threshold input image (zero everything above) right_precentral is the output name, will be in folder you run the command from unless you specify a full path

Creating ROIs from Functional Activations - ROIs can be created in subject space using cluster masks from fsl 1st level analyses to create individual functional ROI for each subject - Example: from first level functional analyses > fslview & > File > Open > run02.feat/cluster_mask_zstat1.nii.gz * Note the intensity of the region you will need this value to extract 

Creating ROIs from functional activations fslmaths run02.feat/cluster_mask_zstat1.nii.gz –thr 6 –uthr 6 example_ROI

Create ROIs from functional activations ROIs can be created in standard space using cluster masks from fsl 3rd level analyses to create group ROIs that can be applied to each subject

Drawing ROIs using FSLview Can be done in subject or standard space This example is in standard space - fslview - File > Create Mask - Use pencil button to fill in voxels you want to have a value of 1 - File > Save

Register ROIs to subject space If you create an ROI in standard space, and you want to extract information from the ROI in subject space (from a first level analysis), register the ROI to the subject’s preprocessed data Since feat was already run, we know the transformation between the BOLD data and the MNI brain: run01.feat/reg/example_func2standard.mat What we need is the inverse transformation matrix: convert_xfm ­inverse run02.feat/reg/example_func2standard.mat ­omat run02.feat/reg/Std2Example_func.mat Apply the transformation matrix to the ROI (for each subject separately) flirt -in test_ROI.nii.gz -ref run02.feat/reg/example_func.nii.gz -applyxfm -init run02.feat/reg/Std2Example_func.mat -out run02.feat/reg/reg_test_ROI

Extracting data from ROIs This example uses the atlas based ROI after transforming to subject space Extract data from ROIs using fslstats using the following options: –k (mask) –m (output the mean) For example: fslstats run02.feat/stats/zstat1.nii.gz –k run02.feat/reg/reg_test_ROI –m gives you the mean zstat in that ROI for each subject Your inputs can be zstat images, magnitude of parameter estimate (cope images) variance of parameter estimate (varcope images) For DTI data, you can extract metrics such as mean FA on a subject by subject basis from a WM ROI

Extracting data from ROIs - Extracting mean time series from ROI - Time series data comes from (preprocessed) filtered_func_data.nii.gz in a first level .feat directory - use function fslmeants fslmeants -i filtered_func_data -o meants.txt -m my_mask